簡易檢索 / 詳目顯示

研究生: 周明昌
Chou, Ming-Chang
論文名稱: 永磁同步馬達驅控衛星反應輪系統之開發
DEVELOPMENT OF A PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVEN SATELLITE REACTION WHEEL SYSTEM
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 王醴
劉添華
楊勝明
龔應時
陳博現
盧向成
廖聰明
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 159
中文關鍵詞: 反應輪衛星姿態控制永磁同步馬達動態模式電流控制速度控制扭力控制前饋控制共振控制強健控制數位訊號處理器數位控制干擾觀測器摩擦估測太陽電池前端轉換器電壓升壓動態煞車
外文關鍵詞: Reaction wheel, satellite attitude control, PMSM, dynamic modeling, current control, speed control, torque control, feed-forward control, resonant control, robust control, DSP, digital control, disturbance observer, friction estimation, photovoltaic cell, front-end converter, voltage boosting, dynamic braking
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反應輪係從事衛星姿態控制之關鍵組件,而永磁同步馬達因具多項優點而逐漸被用為其致動器。本論文開發一個以數位訊號處理器為主之永磁同步馬達驅動衛星反應輪系統,其直流鏈電壓可依馬達轉速及太陽能電池電壓而調整,以在寬廣速度範圍下具良好之驅控性能。首先,由估測之關鍵參數建立永磁同步馬達驅動衛星反應輪系統之動態模式,並據以發展新式電流控制脈寬調制機構。傳統比例積分控制輔以內模式共振控制及強健誤差消除控制,以在弦波反電動勢影響下具精準之暫態及穩態弦波電流追蹤特性,且其追蹤性能不受系統操作條件及參數改變之影響。接著從事永磁同步馬達驅動衛星反應輪之強健扭力控制,以獲得估測扭力之快速控制響應。
    在速度控制方面,首先於選定之工作條件下,根據所估測之動態模式及定義響應軌跡之參考模式,量化設計回授控制器。當操作條件改變時,再以強健速度誤差消除控制維持所定義之響應軌跡。對於大速度命令變動,安排一具適當斜率之斜坡命令,避免長時間之控制力飽和。同時,利用馬達驅動系統之正規反動態模式萃取觀測之擾動信號,並用以估測反應輪之摩擦狀況。
    最後,為從變動之直流電源電壓建立可調整及穩定之直流鏈電壓,開發一升壓型及一升降壓型之直流至直流前端轉換器,並比較評估其對後接永磁同步馬達驅動衛星反應輪於廣速度範圍效能之增進。此外,設計建構一切換控制動態煞車電路以獲得穩定之煞車操控特性。


    Reaction wheel is a key component in performing satellite attitude control, and permanent magnet synchronous motor (PMSM) has been gradually employed as its actuator owing to many advantages. This dissertation presents the development of a digital signal processor (DSP)-based PMSM driven satellite reaction wheel, its DC-link voltage is adjustable in accordance with wheel speed and varied photovoltaic cell voltage to yield good driving performance under wide speed range. First, the dynamical model of the PMSM driven reaction wheel is established with the key parameters being estimated. Accordingly, the novel current controlled PWM scheme is developed. The conventional proportional plus integral (PI) control is augmented with internal model resonant control (IMRC) and robust error cancellation controller to yield precise transient and steady-state sinusoidal current tracking characteristics under sinusoidal speed-dependent back electromotive force (EMF). And the tracking control performance is insensitive to system operating condition and parameter changes. Then the robust torque control of the PMSM driven reaction wheel is performed to yield quick observed torque control response.
    As to the speed control loop, a feedback controller is first quantitatively designed at nominal case according to the estimated dynamic plant model and the defined reference response. As the changes of system operating conditions are occurred, a simple robust speed error cancellation control scheme is developed to preserve the defined response trajectory. For larger speed command change, the ramp command with suited ramping rate is arranged to avoid long duration control effort saturation. Meanwhile, an observed disturbance is obtained using the nominal inverse motor drive model, and it is employed to estimate the wheel frictional condition.
    Finally, to provide adjustable and well-regulated DC-link voltage from the fluctuated photovoltaic DC source voltage, a DC-DC boost and a DC-DC buck-boost front-end converters are established and comparatively evaluated their effectiveness in enhancing the followed PMSM driven wheel performances under wide speed range. In addition, the chopping dynamic braking mechanism is also equipped to yield stable braking operation.

    摘要…………………………………………………………………... a 致謝…………………………………………………………………... b 目錄…………………………………………………………………... c 第一章、簡介………………………………………………………... d 第二章、馬達驅動衛星反應輪系統概述…..…..………………….. f 第三章、數位訊號處理器為主之永磁同步馬達驅動衛星反應輪 系統建立................................................................................ g 第四章、永磁同步馬達驅動衛星反應輪系統之速度控制及摩擦 狀態估測................................................................................ h 第五章、具可調直流鏈電壓之永磁同步馬達驅動反應輪系統....... i 第六章、結論………………………………………………………… j 附錄: 英文論文……………………………………………………… l ABSTRACT ……………………………………………………… i ACKNOWLEDGEMENT ……………………………………………………… ii LIST OF CONTENTS ……………………………………………………… iii LIST OF FIGURES ……………………………………………………… vii LIST OF TABLES ……………………………………………………… xiii LIST OF SYMBOLS ……………………………………………………… xiv CHAPTER 1 INTRODUCTION ……………………………………………………… 1 1.1 Motivation ……………………………………………………… 1 1.2 Literature Survey ……………………………………………………… 3 1.3 Contributions of this Dissertation ……………………………………………………… 13 1.4 Organizations of this Dissertation……………………………………………………… 15 CHAPTER 2 OVERVIEW OF MOTOR DRIVEN SATELLITE REACTION WHEEL ……………………………………………………… 17 2.1 Introduction ……………………………………………………… 17 2.2 Satellite Attitude Control……………………………………………………… 17 2.3 Structure of a Reaction Wheel ……………………………………………………… 25 2.4 Some Commonly Used Motors for Reaction Wheel ……………………………………………………… 27 2.5 Introductory Permanent Magnet Synchronous Motor Drive ……………………………………………………… 29 2.5.1 Classifications and Structures ……………………………………………………… 29 2.5.2 Governing Equations ……………………………………………………… 35 2.5.3 Estimation of Key Motor Parameters ……………………………………………………… 39 2.5.4 Some Key Issues ……………………………………………………… 44 CHAPTER 3 ESTABLISHMENT OF A DSP-BASED PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVEN REACTION WHEEL SYSTEM ……………………………………………………… 45 3.1 Introduction ……………………………………………………… 45 3.2 System Configuration ……………………………………………………… 45 3.3 DSP-based PMSM Driven Reaction Wheel ……………………………………………………… 49 3.3.1 IPM-based Inverter ……………………………………………………… 49 3.3.2 Sensing and Interfacing Circuits ……………………………………………………… 49 3.3.3 Practical Digital Control Considerations ……………………………………………………… 55 3.3.4 The Employed DSP ……………………………………………………… 57 3.3.5 Control Software ……………………………………………………… 57 3.4 The Proposed Current Control Scheme ……………………………………………………… 61 3.4.1 Problem Statement ……………………………………………………… 61 3.4.2 Dynamic Modeling ……………………………………………………… 62 3.4.3 Traditional Current 2DOF Control Scheme ……………………………………………………… 63 3.4.4 The Proposed Current 2DOF Control Schemes ……………………………………………………… 65 3.4.5 Numerical Design and Simulation of the Proposed Control Schemes ……………………………………………………… 72 3.4.6 Experimental Verification ……………………………………………………… 82 3.5 Direct Observed Torque Control ……………………………………………………… 94 3.5.1 Torque Observer ……………………………………………………… 94 3.5.2 Control Scheme ……………………………………………………… 94 3.5.3 Experimental Results ……………………………………………………… 95 CHAPTER 4 SPEED CONTROL AND FRICTIONAL CONDITION ESTIMATION FOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVEN REACTION WHEEL SYSTEM ……………………………………………………… 98 4.1 Introduction ……………………………………………………… 98 4.2 System Configuration of the Developed Reaction Wheel ……………………………………………………… 99 4.3 Equivalent Dynamic Mechanical Load Model ……………………………………………………… 101 4.3.1 Mathematical Model ……………………………………………………… 101 4.3.2 Nominal Parameter Estimation ……………………………………………………… 102 4.4 Identifier ……………………………………………………… 103 4.4.1 Disturbance Estimation ……………………………………………………… 103 4.4.2 Frictional Condition Estimation ……………………………………………………… 104 4.5 Speed Control Scheme ……………………………………………………… 105 4.6 Speed Command Profiling ……………………………………………………… 107 4.7 Experimental Verification ……………………………………………………… 108 CHAPTER 5 A PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVEN REACTION WHEEL SYSTEM WITH ADJUSTABLE DC-LINK VOLTAGE ……………………………………………………… 115 5.1 Introduction ……………………………………………………… 115 5.2 Problem Statement for DC-link Voltage Boosting ……………………………………………………… 116 5.3 System Configuration of the Developed PMSM Driven Reaction Wheel with DC/DC Front-end Converter ……………………………………………………… 118 5.4 Possible Front-end DC/DC Converters and Their Operation Control Capabilities ……………………………………………………… 121 5.5 Front-end DC/DC Converters ……………………………………………………… 124 5.5.1 Governing Equations ……………………………………………………… 124 5.5.2 Control Scheme ……………………………………………………… 131 5.5.3 Performance Experimental Validation ……………………………………………………… 133 5.6 DC-link Voltage Boosting Profile ……………………………………………………… 133 5.7 Experimental Verification ……………………………………………………… 136 5.7.1 Normal Operation ……………………………………………………… 136 5.7.2 Effectiveness of DC-link Voltage Boosting ……………………………………………………… 136 5.7.3 The Effect of Dynamic Braking ……………………………………………………… 137 5.7.4 Comparatively Evaluation of the Boosting Profiles ……………………………………………………… 137 CHAPTER 6 CONCLUSIONS ……………………………………………………… 143 REFERENCES ……………………………………………………… 146 BIOGRAPHICAL NOTE ……………………………………………………… 158

    A. Satellite Attitude Control and Reaction Wheel
    [1] P. C. Hughes, Spacecraft Attitude Dynamics, New York: John Wiley & Sons, 1986.
    [2] V. A. Chobotov, Spacecraft Attitude Dynamics and Control, Florida: Krieger Publishing Company, 1991.
    [3] P. H. W. Cheng, N. D. Georganas and J. A. D. Holbrook, “Kalman estimation and control of dual-spin satellites,” IEEE Trans. Aerosp. Electron. Syst., vol. 13, no. 3, pp. 236-245, 1977.
    [4] J. Fearnsides and S. Chu, “A minimum-fuel mode for steady-state attitude control of an earth-orbiting spacecraft,” IEEE Trans. Autom. Control, vol. 15, no. 3, pp. 362-365, 1970.
    [5] P. A. Servidia and R. S. Sanchez Pena, “Thruster design for position/attitude control of spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 4, pp. 1172-1180, 2002.
    [6] P. A. Servidia and R. S. Sanchez Pena, “Practical stabilization in attitude thruster control,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 2, pp. 584-598, 2005.
    [7] F. K. Yeh, “Sliding-mode adaptive attitude controller design for spacecrafts with thrusters,” IET Control Theory Appl., vol. 4, no. 7, pp. 1254-1264, 2010.
    [8] H. Schaub, S. R. Vadali and J. L. Junkins, “Feedback control law for variable speed control moment gyros,” J. Astronautical Sci., vol. 46, no. 3, pp. 307-328, 1998.
    [9] J. L. Fausz and D. J. Richie, “Flywheel simultaneous attitude control and energy storage using a VSCMG configuration,” in Proc. IEEE CCA, 2000, pp. 991-995.
    [10] L. Baohua and B. Hyochoong, “Momentum transfer-based attitude control of spacecraft with back stepping,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 2, pp. 453-463, 2006.
    [11] S. P. Bhat and P. K. Tiwari, “Controllability of spacecraft attitude using control moment gyroscopes,” IEEE Trans. Autom. Control, vol. 54, no. 3, pp. 585-590, 2009.
    [12] C. Oh, H. Lee and H. Bang, “An experimental study on attitude control of spacecraft using neural networks,” in Proc. IEEE RAST, 2003, pp. 331-336.
    [13] E. Abdulhamitbilal and E. M. Jafarov, “Performances comparison of linear and sliding mode attitude controllers for flexible spacecraft with reaction wheels,” in Proc. IEEE Int. Workshop VSS, 2006, pp. 351-358.
    [14] Z. Ismail and R. Varatharajoo, A study of reaction wheel configurations for a 3-axis satellite attitude control, Advances in Space Research, vol. 45, no. 6, pp. 750-759. Available: http://adsabs.harvard.edu/abs/2010AdSpR..45..750I, 2011,07,19.
    [15] B. Wang, K. Gong, D. Yang and J. Li, Fine attitude control by reaction wheels using variable-structure controller, Acta Astronautia, vol. 52, no. 8, pp. 613-618. Available: http://www.ingentaconnect.com/content/els/00945765/2003/00000052/00000008/art00133, 2011,07,19.
    [16] R. Froelich and H. Papapoff, “Reaction wheel attitude control for space vehicles,” IRE Trans. Autom. Control, vol. 4, no. 3, pp. 139-149, 1959.
    [17] S. J. Dodds and J. Vittek, “Spacecraft attitude control using an induction motor actuated reaction wheel with sensorless forced dynamic drive,” in Proc. IEE. Colloq. All Elect. Aircraft, 1998, pp. 9/1-9/7.
    [18] G. Shengmin and H. Cheng, “A comparative design of satellite attitude control system with reaction wheel,” in Proc. IEEE AHS, 2006, pp. 359-364.
    [19] Y. Zhang, Y. Postrekhin, Ki Bui Ma and W. K. Chu, “Reaction wheel with HTS bearings for mini-satellite attitude control,” Supercod. Sci. Technol., vol. 15, pp. 823-825, 2002.
    [20] K. B. Ma, Y. Zhang, Y. Postrekhin and W. K. Chu, “HTS bearings for space applications reaction wheel with low power consumption for mini-satellites,” IEEE Trans. Appl. Supercond., Part 2, vol. 13, no. 2, pp. 2275-2278, 2003.
    [21] E. Lee, “A micro HTS renewable energy/attitude control system for micro/nano satellites,” IEEE Trans. Appl. Supercond., Part 2, vol. 13, no. 2, pp. 2263-2266, 2003.
    [22] E. Lee, B. Kim, J. Ko, C. Y. Song, S. J. Kim, S. Jeong and S. S. Lee, “An integrated micro HTS system for energy storage and attitude control for three-axis stabilized nanosatellites,” IEEE Trans. Appl. Supercond., Part 2, vol. 15, no. 2, pp. 2324-2327, 2005.
    [23] J. Zhou and K. J. Tseng, “A disk-type bearingless motor for use as satellite momentum- reaction wheel,” in PESC, 2002, June, vol. 4, pp. 1971-1975.
    [24] A. Altay and O. Tekinalp, “Spacecraft energy storage and attitude control,” in Proc. IEEE RAST, 2005, pp. 201-206.
    [25] B. H. Kenny, R. Jansen, P. Kascak, T. Dever and W. Santiago, “Integrated power and attitude control with two flywheels,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 4, pp. 1431-1449, 2005.
    [26] S. Marble and D. Tow, “Bearing health monitoring and life extension in satellite momentum/reaction wheels,” in Proc. IEEE Aerosp. Conf., 2006, pp. 1-7.
    [27] K. C. Pande and R. Venkatachalam, “Semipassive pitch attitude control of satellites by solar radiation pressure,” IEEE Trans. Aerosp. Electron. Syst., vol. 15, no. 2, pp. 194-198, 1979.
    [28] K. C. Pande and R. Venkatachalam, “Solar pressure attitude stabilization of earth-pointing spacecraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 17, no. 6, pp. 748-756, 1981.
    [29] R. Venkatachalam, “Large angle pitch attitude maneuver of a satellite using solar radiation pressure,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 4, pp. 1164-1169, 1993.
    [30] S. N. Singh and W. Yim, “Feedback linearization and solar pressure satellite attitude control,” IEEE Trans. Aerosp. Electron. Syst., vol. 32, no. 2, pp. 732-741, 1996.
    [31] S. N. Singh and W. Yim, “Nonlinear adaptive spacecraft attitude control using solar radiation pressure,” IEEE Trans. Aerosp. Electron. Syst., vol. 41, no. 3, pp. 770-779, 2005.
    [32] M. Lovera, E. De Marchi and S. Bittanti, “Periodic attitude control techniques for small satellites with magnetic actuators,” IEEE Trans. Cont. Syst. Technol., vol. 10, no. 1, pp. 90-95, 2002.
    [33] M. Lovera and A. Astolfi, “Global magnetic attitude control of spacecraft in the presence of gravity gradient,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 3, pp. 796-805, 2006.
    [34] A. Ghaedi and M. A. Nekoui, “3-axes satellite attitude control based on biased angular momentum,” in Proc. IEEE EPE-PEMC, 2008, pp. 1054-1057.
    [35] D. Desiderio, M. Lovera, S. Pautonnier and R. Drai, “Magnetic momentum management for a geostationary satellite platform,” IET Control Theory Appl., vol. 3, no. 10, pp. 1370-1382, 2009.
    [36] T. Pulecchi, M. Lovera and A. Varga, “Optimal discrete-time design of three-axis magnetic attitude control laws,” IEEE Trans. Cont. Syst. Technol., vol. 18, no. 3, pp. 714-722, 2010.

    B. Permanent Magnet Synchronous Machine
    [37] “Selection of Electric Motors for Aerospace Applications,” NASA Document on Preferred Reliability Practices, Practice No. PD-ED-1229, pp. 1-6.
    [38] E. D. Ganev, “High-Performance electric drives for aerospace more electric architectures part I- electric machines,” IEEE Power Eng. Soc. General Meeting, pp. 1-8, June 2007.
    [39] P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: Wiley John & Sons, Inc., 1997.
    [40] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New York: Wiley, John & Sons, Inc., 2002.
    [41] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
    [42] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey: Prentice Hall, Inc., 2001.
    [43] J. R. Hendershot Jr. and T. J. E. Miller, Design of Brushless Permanent-Magnet Motor, Hillsboro Ohio: Magna Physics Publishing, 1994.
    [44] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994.
    [45] S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 101-108, 2007.
    [46] B. K. Bose, “Power electronics and motor drives recent progress and perspective,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 581-588, 2009.
    [47] M. Melfi, S. Evon and R. McElveen, “Induction versus permanent magnet motors,” IEEE Ind. Appl. Mag., vol. 15, no. 6, pp. 28-35, 2009.
    [48] M. Jungreis and A. W. Kelley, “Adjustable speed drive for residential applications,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1315-1322, 1995.
    [49] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
    [50] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Proc. IEEE IAS, 1999, vol. 2, pp. 840-845.
    [51] M. Yabe, K. Sakanobe and M. Kawakubo, “High efficient motor drive technology for refrigerator,” in Proc. IEEE Environmentally Conscious Design and Inverse Manufacturing, 2005, pp. 708-709.
    [52] S. Kawano, H. Murakami and N. Nishiyama, “High performance design of an interior permanent magnet synchronous motor for electric vehicles,” in Proc. IEEE PCC-Nagoka, 1997, pp. 33-36.
    [53] Y. Honda, T. Nakamura, T. Higaki and Y. Takeda, “Motor design considerations and test results of an interior permanent magnet synchronous motor for electric vehicles,” in Proc. IEEE IAS, 1997, vol. 1.1, pp. 75-82.
    [54] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [55] A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1531-1537, 2007.
    [56] S. Lin, T. X. Wu, L. Zhou, F. Moslehy, J. Kapat and L. Chow, “Modeling and design of super high speed permanent magnet synchronous motor (PMSM),” in Proc. IEEE NAECON, 2008, pp. 41-44.
    [57] G. M. Gilson, T. Raminosoa, S. J. Pickering, C. Gerada and D. B. Hann, “A combined electromagnetic and thermal optimisation of an aerospace electric motor,” in Proc. IEEE ICEM, 2010, pp. 1-7.
    [58] R. P. Praveen, M. H. Ravichandran, V. T. Sadasivan Achari, V. P. Jagathy Raj, G. Madhu and G. R. Bindu, “Design and analysis of zero cogging brushless DC motor for spacecraft applications,” in Proc. IEEE ETCI-CON, 2010, pp. 254-258.
    [59] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
    [60] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
    [61] N. Urasaki, T. Senjyu and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 41-47, 2003.
    [62] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and D. Min, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
    [63] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
    [64] C. C. Liaw, Performance improvement and sensorless control for interior permanent magnet synchronous motor, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., 2002.
    C. Winding Current Control
    [65] K. Gulez, A. A. Adam and H. Pastaci, “Torque ripple and EMI noise minimization in PMSM using active filter topology and field-oriented control,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 251-257, 2008.
    [66] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
    [67] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.
    [68] Y. A. R. I. Mohamed and E. F. EI-Saadany, “Robust high bandwidth discrete-time predictive current control with predictive internal model – a unified approach for voltage-source PWM converters,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 126-136, 2008.
    [69] C. M. Liaw, “Design of a two-degree-of-freedom controller for motor drives,” IEEE Trans. Autom. Control, vol. 37, no. 8, pp. 1215-1220, Aug. 1992.
    [70] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” in IEE Proc. Electric Power Appl., Nov. 2000, vol. 147, no. 6, pp. 503-512.
    [71] C. C. Liaw, C. M. Liaw, H. C. Cheng, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, Feb. 2003, vol. 2, pp. 1045-1051.
    [72] L. Harnefors and H. P. Nee, “Robust current control of AC machines using the internal model control method,” in Proc. IEEE IAS, Oct. 1995, vol. 1, pp. 303-309.
    [73] Y. A. R. I. Mohamed and E. F. EI-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, 2008.
    [74] M. Bodson, A. Sacks and P. Khosla, “Harmonic generation in adaptive feedforward cancellation schemes,” IEEE Trans. Autom. Control, vol. 39, no. 9, pp. 1939-1944, 1994.
    [75] M. Bodson, “Equivalence between adaptive cancellation algorithms and linear time-varying compensators,” in Proc. IEEE Decision and Control Conf., Dec. 2004, pp. 638-643.
    [76] S. Fukuda and T. Yoda, “A novel current tracking method for active filters based on a sinusoidal internal model,” IEEE Trans. Ind. Appl., vol. 37, no. 3, pp. 888-895, May/Jun. 2001.
    [77] S. Fukuda and R. Imamura, “Application of a sinusoidal internal model to current control of three-phase utility-interface converters,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 420-426, April 2005.
    [78] W. Lenwari, M. Summer, P. Zanchetta and M. Culea, “A high performance harmonic current control for shunt active filters based on resonant compensators,” in Proc. IEEE IECON, Nov. 2006, pp. 2109-2114.
    [79] D. N. Zmood, D. G. Holmes and G. Bode, “Frequency domain analysis of three phase linear current regulators,” IEEE Trans. Ind. Appl., vol. 37, no. 2, pp. 601-610, Mar/Apr 2001.
    [80] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814-822, Mar 2003.
    [81] H. J. Guo, K. Mochizuki, T. Watanabe and O. Ichinokura, “A new control method of BLDCM based on internal model principle,” in Proc. IEEE PEDS, Nov. 2003, vol. 2, pp. 1686-1691.
    [82] P. Degobert, G. Remy, J Zeng, P. J. Barre and J. P. Hautier, “High performance control of the permanent magnet synchronous motor using self-tuning resonant controllers,” in Proc. Southeastern Symp. Sys. Theory, Mar. 2006, pp. 382-386.
    [83] M. C. Chou and C. M. Liaw, “Development of robust current 2-DOF controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, May 2009.
    [84] F. Briz, M. W. Degner and R. D. Lorenz, “Analysis and design of current regulators using complex vectors,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 817-825, 2000.
    [85] M. Konghirun and L. Xu, “A fast transient-current control strategy in sensorless vector-controlled permanent magnet synchronous motor,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1508-1512, 2006.
    [86] M. Abul Masrur, “Studies on the effect of filtering, digitization, and computation algorithm on the ABC-DQ current transformation in PWM inverter drive system,” IEEE Trans. Veh. Technol., vol. 44, no. 2, pp. 356-365, 1995.
    D. Speed Control and Friction Diagnosis
    [87] J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3397-3402.
    [88] S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear controller design for a permanent magnet synchronous motor,” in Proc. IEEE IEMDC, 2007, vol. 1, pp. 776-780.
    [89] D. H. Lee and J. W. Ahn, “Dual speed control scheme of servo drive system for a nonlinear friction compensation,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 959-965, 2008.
    [90] I. C. Baik, K. H. Kim and M. J. Youn, “Robust nonlinear speed control of PM synchronous motor using boundary layer integral sliding mode control technique,” IEEE Trans. Contr. Syst. Technol., vol. 8, no. 1, pp. 47-54, 2000.
    [91] B. Singh, B. P. Singh and S. Dwivedi, “DSP based implementation of sliding mode speed controller for direct torque controlled PMSM drive,” in Proc. IEEE ICIT, 2006, pp. 1301-1308.
    [92] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
    [93] P. Bastiani, M. L. Corradini, G. Ippoliti, S. Longhi, G. Orlando and G. Vannucci, “Experimental validation of a sliding mode controller for permanent-magnet synchronous motors,” in Proc. IEEE MED, 2010, pp. 527-532.
    [94] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529-1535, 2004.
    [95] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606.
    [96] M. M. I. Chy and M. N. Uddin, “Recent developments of artificial intelligent controllers for IPM motor drive applications,” in Proc. IEEE ICIT, 2006, pp. 253-258.
    [97] T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. IEEE Power Electron. Appl., 2007, pp. 1-10.
    [98] Z. Ibrahim and E. Levi, “A comparative analysis of fuzzy logic and PI speed control in high-performance AC drives using experimental approach,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1210-1218, 2002.
    [99] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
    [100] Y. A.-R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
    [101] D. Xu, T. Wang, H. Wei and J. Liu, “Adaptive model following speed control method of permanent magnet synchronous motor,” in Proc. IEEE ICIEA, 2009, pp. 721-725.
    [102] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2006, vol. 1, pp. 618-623.
    [103] T. N. Shi, X. C. Wang, C. L. Xia and Q. Zhang, “Adaptive speed control of PMSM based on wavelet neural network,” in Proc. IEEE ISIE, 2007, pp. 2842-2847.
    [104] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
    [105] J. B. Song and K. S. Byeon, “Design of time delay controller based on variable reference model,” in Proc. Amer. Control Conf., 1998, vol. 6, pp. 3339-3343.
    [106] A. D. Christian and W. P. Seering, “Initial experiments with a flexible robot,” in Proc. IEEE Int. Conf. Robotics and Automation, 1990, vol. 1, pp. 722-727.
    [107] H. Tian, “Applications of intelligent control in improving dynamics of precision motion systems used in microelectronics manufacturing,” in Proc. 27th Annu. IEEE/SEMI Int. Electronics Manufacturing Technology Symp., 2002, pp. 410-414.
    [108] M. C. Reynolds and P. Meckl, “The application of command shaping to the tracking problem,” in Proc. Amer. Control Conf. Denver, 2003, pp. 3148-3153.
    [109] S. Taniwaki and Y. Ohkami, “Experimental and numerical analysis of reaction wheel disturbances,” JSME Int. J. Series C, vol. 46, no. 2, pp. 519-526, 2003.
    [110] L. A. Jones and J. H. Lang, “A state observer for the permanent-magnet synchronous motor,” IEEE Trans. Ind. Electron., vol. 36, no. 3, pp. 374-382, Aug. 1989.
    [111] C. T. Johnson and R. D. Lorenz, “Experimental identification of friction and its compensation in precise, position controlled mechanisms,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1392-1398, Nov. 1992.
    [112] W. T. Su and C. M. Liaw, “Adaptive positioning control for a LPMSM drive based on adapted inverse model and robust disturbance observer,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 505-517, Mar. 2006.
    [113] T. S. Kwon, S. K. Sul, H. Nakamura and K. Tsuruta, “Identification of the mechanical parameters for servo drive,” in Proc. IEEE IAS, Oct. 2006, vol. 2, pp. 905-910.
    [114] S. Hashimoto, Y. Fujii and M. Kigure, “High-precision control of linear actuators with nonlinear friction,” in Proc. Int. Conf. Mechatronics and Machine Vision in Practice, Dec. 2007, pp. 62-67.
    [115] Z. J. Yang, H. Ysubakihara, S. Kanae, K. Wada and C. Y. Su, “A novel robust nonlinear motion controller with disturbance observer,” IEEE Trans. Control Syst. Technol., vol. 16, no. 1, pp. 137-147, Jan. 2008.
    [116] Z. Jamaludin, H. V. Brussel and J. Swevers, “Friction compensation of an XY feed table using friction-model-based feedforward and an inverse-model-based disturbance observer,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3848-3852, Oct. 2009.
    E. Voltage Boosting
    [117] K. Yamamoto, K. Shinohara and H. Makishima, “Comparison between flux weakening and PWM inverter with voltage booster for permanent magnet synchronous motor drive,” in Proc. IEEE PCC, 2002, vol. 1, pp. 161-166.
    [118] A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness of AC drives for electric vehicles improved by a novel boost DC-DC conversion structure,” in Proc. IEEE PET, 1998, pp. 11-19.
    [119] K. Yamamoto, K. Shinohara and T. Nagahama, “Characteristics of permanent-magnet synchronous motor driven by PWM inverter with voltage booster,” IEEE Trans. Ind. Appl., vol. 40, no. 4, pp. 1145-1152, 2004.
    [120] H. Matsumoto, “Experiment of boost motor driver with EDLCs,” Electron. Letters, vol. 45, no. 12, pp. 654-655, June 2009.
    [121] K. Asano, Y. Inaguma, H. Ohtani, E. Sato, M. Okamura and S. Sasaki, “High performance motor drive technologies for hybrid vehicles,” in Proc. IEEE PCC, 2007, pp. 1584-1589.
    [122] F. Caricchi, F. Crescimbini and A. Di Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, vol. 2, pp. 887-892.
    [123] F. Caricchi, F. Crescimbini, F. Giulii Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [124] J. H. Kim, H. S. Kang, B. K. Lee and J. Hur, “Cost Effective PAM inverter for 42V hybrid electric vehicles (HEV),” in Proc. IEEE VPPC, 2008, pp. 1-6.
    [125] A. M. Howlader, N. Urasaki, Y. Senjyu and A. Yona, “Wide-speed-range optimal PAM control for permanent magnet synchronous motor,” in Proc. IEEE ICEMs, 2009, pp. 1-5.
    [126] W. Xiao, N. Ozog and W. G. Dunford, “Topology study of photovoltaic interface for maximum power point tracking,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1696-1704, 2007.
    [127] J. P. Lee, B. D. Min, T. J. Kim, D. W. Yoo and J. Y. Yoo, “A novel topology for photovoltaic DC/DC full-bridge converter with flat efficiency under wide PV module voltage and load range,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2655-2663, 2008.
    [128] Z. Qian, O. abdel-Rahman, H. Al-Atrash and I. Batarseh, “Modeling and control of three-port DC/DC converter interface for satellite applications,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 637-649, May 2010.
    [129] M. Akbaba and M. C. Akbaba, “Dynamic performance of a photovoltaic-boost converter powered DC motor-pump system,” in Proc. IEEE IEMDC, 2001, pp. 356-361.
    [130] M. A. Vitorino, and M. B. R. Correa, “High performance photovoltaic pumping system using induction motor,” in Proc. IEEE COBEP, 2009, pp. 797-804.
    [131] M. H. Todorovic, L. Palma and P. N. Enjeti, “Design of a wide Input range DC-DC converter with a robust power control scheme suitable for fuel cell power conversion,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1247-1255, 2008.
    F. Others
    [132] “IRAMS10UP60A data sheet,” Available: http://www.irf.com/product-info/
    datasheets /data/irams10up60a.pdf, 2011,07,19.
    [133] G. F. Franklin, D. J. Powell and M. L. Workman, Digital Control of Dynamic Systems, 3rd ed., Boston: Addison-Wesley, 1997.
    [134] “TMS320F2812 digital signal processors data manual,” Available: http://focus.ti.
    com/lit/ds/symlink/tms320f2812.pdf, 2011,07,19.
    [135] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New York, John Wiley & Sons, Inc., 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE