簡易檢索 / 詳目顯示

研究生: 游忠凱
Yu, Chung Kai
論文名稱: 胃幽門螺旋桿菌26695菌株之phosphoheptose isomerase由 hp0857基因所表現之特性研究
Identification and characterization of Helicobacter pylori 26695 phosphoheptose isomerase encodedby hp0857
指導教授: 高茂傑
Kao, Mou-Chieh
口試委員: 殷献生
蘇慧敏
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 79
中文關鍵詞: 胃幽門螺旋桿菌
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Helicobacter pylori is a gram-negative spiral-shaped microaerophilic bacterium which infects 50% human population and is associated with chronic gastritis, peptic ulcer, gastroduodenal ulcer, gastric adenocarcinoma and mucosa-associated lymphatic tissue (MALT) lymphoma. Because of the appearance of antibiotic resistance, it is essential to develop new antibiotics against this notorious bacterium.
    Lipopolysaccharide (LPS) plays significant roles in pathogenesis of H. pylori infection. This phosphorylated lipoglycan maintains the structural integrity of bacterial outer membrane and provides a protective barrier against the entry of toxic hydrophobic compounds like bile salts, detergents and lipophilic antibiotics into the bacterial cell. It is composed of lipid A, core oligosaccharide and O-chain polysaccharide.
    In this study, we identified that the H. pylori open reading frame (ORF) hp0857 codes for a phosphoheptose isomerase which catalyzes the isomerization of D-Sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate and is involved in inner core biosynthesis of lipopolysaccharide. We cloned hp0857 and overexpressed it in Eschericha coli. The recombinant protein was purified to homogeneity with the subunit molecular weight of 23.2 kDa. The gel filtration and analytical ultracentrifugation studies indicated that HP0857 protein has a native molecular mass of 40.5 ± 2.2 kDa and 49.0 ± 0.1 kDa, respectively, suggesting that HP0857 protein is likely a dimer under the present experimental conditions. The result of circular dichroism spectrum analysis indicated that HP0857 contains 67.8 ± 6.8% α-helix and 2.7 ± 0.8% β-strand. The results of the enzymatic activity assay indicated that the purified protein could convert the D-Sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate. Moreover, a HP0857 knockout mutant was constructed and its phenotypic properties was characterized. The HP0857 knockout mutant showed a truncated LPS structure, a reduced growth rate, a weak motility and more susceptible to detergent Triton X-100 and antibiotic novobiocin. In addition, the AGS cells infected by the HP0857 knockout mutant were unable to display a classic hummingbird phenotype. Complementation of the HP0857 in the knockout mutant was found to restore most of these phenotypic changes. In conclusion, we demonstrated that HP0857 protein is essential for LPS inner core biosynthesis of H. pylori and is a potential target for developing new antimicrobial agents against H. pylori infection.


    Abstract i 中文摘要 iii Table of contents v Abbreviations viii Introduction 1 Materials and methods 13 Results 26 Identification and the bioinformation of HP0857 26 Molecular cloning of hp0857 gene and hp0860 gene 27 Overexpression and affinity purification of HP0857, HP0858 and HP0860 protein 27 H. pylori HP0857 steady-state kinetic analysis 28 Molecular weight determination of HP0857 protein 29 Circular dichroism of HP0857 protein 30 The confirmation of HP0857 knockout and its complement mutant strains by genomic DNA PCR 30 The effects of HP0857 knockout mutant on LPS expression 31 The growth curve analysis of wild type H. pylori strain, HP0857 knockout mutant and its complement mutant strain 32 The effects of HP0857 mutations on detergent (SDS, Triton X-100) and antibiotic novobiocin resistance 32 The motility comparison of wild type strain and HP0857 knockout mutant 33 The effects of HP0857 mutation on host cell morphology and bacterial adhesion 34 Discussion 35 Reference 40 Tables 51 Table 1. Sequences of the primers used in this study: 51 Table 2. Sequence comparison of H. pylori HP0857 protein with homologues from other gram-negative bacteria 52 Table 3. The summary of steady state kinetic parameters of purified HP0857 (GmhA) protein determined by the malachite green phosphate detection assay 53 Table 4. Comparison of biochemical properties of GmhA homologues from different species 53 Table 5. Minimal Inhibitory Concentrations (MICs) of H. pylori strains to antibiotics (Novobiocin) and detergent (Triton X-100 and SDS) 54 Table 6. Motility comparison of H. pylori strains on Brucella-serum semi-solid agar after 6 days culture 54 Figures 55 Figure 1. The genomic bioinformations of HP0857 in H. pylori 26695 strain 55 Figure 2. Amino acid sequence alignment of the H. pylori 26695 phosphoheptose isomerase (HP0857) with its homologues 56 Figure 3. Analysis of transmembrane and hydrophobicity profiles of the HP0857 protein 57 Figure 4. The chemical structure of the saccharide moiety of H. pylori 26695 LPS 58 Figure 5. The proposed mechanism for ADP-heptose biosynthetic pathway in H. pylori 58 Figure 6. Molecular cloning of hp0857 gene and hp0860 gene 59 Figure 7. Purification of HP0857 protein with the metal-chelated affinity column using an increasing gradient of imidazole 60 Figure 8. Heterogeneous expression and purification of HP0857 61 Figure 9. Heterogeneous expression and purification of HP0858 62 Figure 10. Heterogeneous expression and purification of HP0860 63 Figure 11. (A) The proposed mechanism for ADP-heptose biosynthetic pathway in H. pylori (B) The reaction scheme of phosphate detection used in this study 64 Figure 12. The evaluation of the specificity of the assay 65 Figure 13. Steady state kinetic analysis of H. pylori HP0857 with S7P as substrate 66 Figure 14. The subunit molecular weight of HP0857 determined by MALDI-TOF mass spectrometry 67 Figure 15. Determination of the native molecular weight of the recombinant HP0857 by gel filtration 68 Figure 16. The native molecular weight of recombinant HP0857 was determined by analytical ultracentrifugation 69 Figure 17. The secondary structure of H. pylori HP0857 70 Figure 18. Molecular cloning of hp0857 knockout plasmid 71 Figure 19. The construction of the hp0857 knockout complement plasmid 72 Figure 20. Schematic representation of the construction of HP0857 knockout and its complement mutants. 73 Figure 21. The confirmation of HP0857 knockout and its complement mutant strains by genomic DNA PCR 74 Figure 22. LPS profile analysis 75 Figure 23. The growth curve analysis of the wild type H. pylori strain, HP0857 knockout mutant and its complement mutant 76 Figure 24. Effects of HP0857 mutations on novobiocin resistance and detergent susceptibility of H. pylori 77 Figure 25. Effects of HP0857 mutations on AGS cell morphological changes after infection 78 Figure 26. Comparison of adherence levels of the H. pylori strains to AGS cells 79

    1. Marshall, B. J., & Warren, J. R. (1984). Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1(8390), 1311-1315.
    2. Goodwin, C. S., McCulloch, R. K., Armstrong, J. A., & Wee, S. H. (1985). Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (campylobacter pyloridis) from the human gastric mucosa. Journal of Medical Microbiology, 19(2), 257-267.
    3. Goodwin, C. S., McConnell, W., McCulloch, R. K., McCullough, C., Hill, R., Bronsdon, M. A., et al. (1989). Cellular fatty acid composition of campylobacter pylori from primates and ferrets compared with those of other campylobacters. Journal of Clinical Microbiology, 27(5), 938-943.
    4. Whary, M. T., & Fox, J. G. (2004). Natural and experimental helicobacter infections. Comparative Medicine, 54(2), 128-158.
    5. Josenhans, C., Eaton, K. A., Thevenot, T., & Suerbaum, S. (2000). Switching of flagellar motility in helicobacter pylori by reversible length variation of a short homopolymeric sequence repeat in fliP, a gene encoding a basal body protein. Infection and Immunity, 68(8), 4598-4603.
    6. Nomura, A., Stemmermann, G. N., Chyou, P. H., Perez-Perez, G. I., & Blaser, M. J. (1994). Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Annals of Internal Medicine, 120(12), 977-981.
    7. Olson, J. W., & Maier, R. J. (2002). Molecular hydrogen as an energy source for helicobacter pylori. Science (New York, N.Y.), 298(5599), 1788-1790.
    8. Stark, R. M., Gerwig, G. J., Pitman, R. S., Potts, L. F., Williams, N. A., Greenman, J., et al. (1999). Biofilm formation by helicobacter pylori. Letters in Applied Microbiology, 28(2), 121-126.
    9. Kusters, J. G., van Vliet, A. H., & Kuipers, E. J. (2006). Pathogenesis of helicobacter pylori infection. Clinical Microbiology Reviews, 19(3), 449-490.
    10. Parsonnet, J., Friedman, G. D., Vandersteen, D. P., Chang, Y., Vogelman, J. H., Orentreich, N., et al. (1991). Helicobacter pylori infection and the risk of gastric carcinoma. The New England Journal of Medicine, 325(16), 1127-1131.
    11. Parsonnet, J., Hansen, S., Rodriguez, L., Gelb, A. B., Warnke, R. A., Jellum, E., et al. (1994). Helicobacter pylori infection and gastric lymphoma. The New England Journal of Medicine, 330(18), 1267-1271.
    12. Williams, M. P., & Pounder, R. E. (1999). Helicobacter pylori: From the benign to the malignant. The American Journal of Gastroenterology, 94(11 Suppl), S11-6.
    13. Brown, L. M. (2000). Helicobacter pylori: Epidemiology and routes of transmission. Epidemiologic Reviews, 22(2), 283-297.
    14. Walsh, J. H., & Peterson, W. L. (1995). The treatment of helicobacter pylori infection in the management of peptic ulcer disease. The New England Journal of Medicine, 333(15), 984-991.
    15. Mirbagheri, S. A., Hasibi, M., Abouzari, M., & Rashidi, A. (2006). Triple, standard quadruple and ampicillin-sulbactam-based quadruple therapies for H. pylori eradication: A comparative three-armed randomized clinical trial. World Journal of Gastroenterology : WJG, 12(30), 4888-4891.
    16. Malfertheiner, P., Megraud, F., O'Morain, C., Bazzoli, F., El-Omar, E., Graham, D., et al. (2007). Current concepts in the management of helicobacter pylori infection: The maastricht III consensus report. Gut, 56(6), 772-781.
    17. Crone, J., Granditsch, G., Huber, W. D., Binder, C., Innerhofer, A., Amann, G., et al. (2003). Helicobacter pylori in children and adolescents: Increase of primary clarithromycin resistance, 1997-2000. Journal of Pediatric Gastroenterology and Nutrition, 36(3), 368-371.
    18. Dore, M. P., Osato, M. S., Realdi, G., Mura, I., Graham, D. Y., & Sepulveda, A. R. (1999). Amoxycillin tolerance in helicobacter pylori. The Journal of Antimicrobial Chemotherapy, 43(1), 47-54.
    19. Wu, H., Shi, X. D., Wang, H. T., & Liu, J. X. (2000). Resistance of helicobacter pylori to metronidazole, tetracycline and amoxycillin. The Journal of Antimicrobial Chemotherapy, 46(1), 121-123.
    20. Graham, D. Y., & Shiotani, A. (2008). New concepts of resistance in the treatment of helicobacter pylori infections. Nature Clinical Practice.Gastroenterology & Hepatology, 5(6), 321-331.
    21. Tomb, J. F., White, O., Kerlavage, A. R., Clayton, R. A., Sutton, G. G., Fleischmann, R. D., et al. (1997). The complete genome sequence of the gastric pathogen helicobacter pylori. Nature, 388(6642), 539-547.
    22. Achtman, M., Azuma, T., Berg, D. E., Ito, Y., Morelli, G., Pan, Z. J., et al. (1999). Recombination and clonal groupings within helicobacter pylori from different geographical regions. Molecular Microbiology, 32(3), 459-470.
    23. Oh, J. D., Kling-Backhed, H., Giannakis, M., Xu, J., Fulton, R. S., Fulton, L. A., et al. (2006). The complete genome sequence of a chronic atrophic gastritis helicobacter pylori strain: Evolution during disease progression. Proceedings of the National Academy of Sciences of the United States of America, 103(26), 9999-10004.
    24. Ottemann, K. M., & Lowenthal, A. C. (2002). Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infection and Immunity, 70(4), 1984-1990.
    25. Schreiber, S., Konradt, M., Groll, C., Scheid, P., Hanauer, G., Werling, H. O., et al. (2004). The spatial orientation of helicobacter pylori in the gastric mucus. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 5024-5029.
    26. Foster, J. W. (2004). Escherichia coli acid resistance: Tales of an amateur acidophile. Nature Reviews.Microbiology, 2(11), 898-907.
    27. Merrell, D. S., & Camilli, A. (1999). The cadA gene of vibrio cholerae is induced during infection and plays a role in acid tolerance. Molecular Microbiology, 34(4), 836-849.
    28. Merrell, D. S., & Camilli, A. (2000). Regulation of vibrio cholerae genes required for acid tolerance by a member of the "ToxR-like" family of transcriptional regulators. Journal of Bacteriology, 182(19), 5342-5350.
    29. Clyne, M., Labigne, A., & Drumm, B. (1995). Helicobacter pylori requires an acidic environment to survive in the presence of urea. Infection and Immunity, 63(5), 1669-1673.
    30. Scott, D. R., Weeks, D., Hong, C., Postius, S., Melchers, K., & Sachs, G. (1998). The role of internal urease in acid resistance of helicobacter pylori. Gastroenterology, 114(1), 58-70.
    31. Akada, J. K., Shirai, M., Takeuchi, H., Tsuda, M., & Nakazawa, T. (2000). Identification of the urease operon in helicobacter pylori and its control by mRNA decay in response to pH. Molecular Microbiology, 36(5), 1071-1084.
    32. Smoot, D. T. (1997). How does helicobacter pylori cause mucosal damage? direct mechanisms. Gastroenterology, 113(6 Suppl), S31-4; discussion S50.
    33. Cover, T. L., & Blaser, M. J. (1992). Purification and characterization of the vacuolating toxin from helicobacter pylori. The Journal of Biological Chemistry, 267(15), 10570-10575.
    34. Segal, E. D., Cha, J., Lo, J., Falkow, S., & Tompkins, L. S. (1999). Altered states: Involvement of phosphorylated CagA in the induction of host cellular growth changes by helicobacter pylori. Proceedings of the National Academy of Sciences of the United States of America, 96(25), 14559-14564.
    35. Blaser, M. J. (1993). Helicobacter pylori: Microbiology of a 'slow' bacterial infection. Trends in Microbiology, 1(7), 255-260.
    36. Alm, R. A., Ling, L. S., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., et al. (1999). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen helicobacter pylori. Nature, 397(6715), 176-180.
    37. Leying, H., Suerbaum, S., Geis, G., & Haas, R. (1992). Cloning and genetic characterization of a helicobacter pylori flagellin gene. Molecular Microbiology, 6(19), 2863-2874.
    38. Suerbaum, S., Josenhans, C., & Labigne, A. (1993). Cloning and genetic characterization of the helicobacter pylori and helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. Journal of Bacteriology, 175(11), 3278-3288.
    39. O'Toole, P. W., Kostrzynska, M., & Trust, T. J. (1994). Non-motile mutants of helicobacter pylori and helicobacter mustelae defective in flagellar hook production. Molecular Microbiology, 14(4), 691-703.
    40. Kim, J. S., Chang, J. H., Chung, S. I., & Yum, J. S. (1999). Molecular cloning and characterization of the helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. Journal of Bacteriology, 181(22), 6969-6976.
    41. Homma, M., DeRosier, D. J., & Macnab, R. M. (1990). Flagellar hook and hook-associated proteins of salmonella typhimurium and their relationship to other axial components of the flagellum. Journal of Molecular Biology, 213(4), 819-832.
    42. Boren, T., Falk, P., Roth, K. A., Larson, G., & Normark, S. (1993). Attachment of helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science (New York, N.Y.), 262(5141), 1892-1895.
    43. Mahdavi, J., Sonden, B., Hurtig, M., Olfat, F. O., Forsberg, L., Roche, N., et al. (2002). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science (New York, N.Y.), 297(5581), 573-578.
    44. Roche, N., Angstrom, J., Hurtig, M., Larsson, T., Boren, T., & Teneberg, S. (2004). Helicobacter pylori and complex gangliosides. Infection and Immunity, 72(3), 1519-1529.
    45. Yamaoka, Y., Kwon, D. H., & Graham, D. Y. (2000). A M(r) 34,000 proinflammatory outer membrane protein (oipA) of helicobacter pylori. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7533-7538.
    46. Kudo, T., Lu, H., Wu, J. Y., Graham, D. Y., Casola, A., & Yamaoka, Y. (2005). Regulation of RANTES promoter activation in gastric epithelial cells infected with helicobacter pylori. Infection and Immunity, 73(11), 7602-7612.
    47. Lu, H., Wu, J. Y., Kudo, T., Ohno, T., Graham, D. Y., & Yamaoka, Y. (2005). Regulation of interleukin-6 promoter activation in gastric epithelial cells infected with helicobacter pylori. Molecular Biology of the Cell, 16(10), 4954-4966.
    48. Wu, J. Y., Lu, H., Sun, Y., Graham, D. Y., Cheung, H. S., & Yamaoka, Y. (2006). Balance between polyoma enhancing activator 3 and activator protein 1 regulates helicobacter pylori-stimulated matrix metalloproteinase 1 expression. Cancer Research, 66(10), 5111-5120.
    49. Cover, T. L., Tummuru, M. K., Cao, P., Thompson, S. A., & Blaser, M. J. (1994). Divergence of genetic sequences for the vacuolating cytotoxin among helicobacter pylori strains. The Journal of Biological Chemistry, 269(14), 10566-10573.
    50. Phadnis, S. H., Ilver, D., Janzon, L., Normark, S., & Westblom, T. U. (1994). Pathological significance and molecular characterization of the vacuolating toxin gene of helicobacter pylori. Infection and Immunity, 62(5), 1557-1565.
    51. Schmitt, W., & Haas, R. (1994). Genetic analysis of the helicobacter pylori vacuolating cytotoxin: Structural similarities with the IgA protease type of exported protein. Molecular Microbiology, 12(2), 307-319.
    52. Nguyen, V. Q., Caprioli, R. M., & Cover, T. L. (2001). Carboxy-terminal proteolytic processing of helicobacter pylori vacuolating toxin. Infection and Immunity, 69(1), 543-546.
    53. Ilver, D., Barone, S., Mercati, D., Lupetti, P., & Telford, J. L. (2004). Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cellular Microbiology, 6(2), 167-174.
    54. Lupetti, P., Heuser, J. E., Manetti, R., Massari, P., Lanzavecchia, S., Bellon, P. L., et al. (1996). Oligomeric and subunit structure of the helicobacter pylori vacuolating cytotoxin. The Journal of Cell Biology, 133(4), 801-807.
    55. Cover, T. L., Hanson, P. I., & Heuser, J. E. (1997). Acid-induced dissociation of VacA, the helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. The Journal of Cell Biology, 138(4), 759-769.
    56. Lanzavecchia, S., Bellon, P. L., Lupetti, P., Dallai, R., Rappuoli, R., & Telford, J. L. (1998). Three-dimensional reconstruction of metal replicas of the helicobacter pylori vacuolating cytotoxin. Journal of Structural Biology, 121(1), 9-18.
    57. Czajkowsky, D. M., Iwamoto, H., Cover, T. L., & Shao, Z. (1999). The vacuolating toxin from helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proceedings of the National Academy of Sciences of the United States of America, 96(5), 2001-2006.
    58. Adrian, M., Cover, T. L., Dubochet, J., & Heuser, J. E. (2002). Multiple oligomeric states of the helicobacter pylori vacuolating toxin demonstrated by cryo-electron microscopy. Journal of Molecular Biology, 318(1), 121-133.
    59. El-Bez, C., Adrian, M., Dubochet, J., & Cover, T. L. (2005). High resolution structural analysis of helicobacter pylori VacA toxin oligomers by cryo-negative staining electron microscopy. Journal of Structural Biology, 151(3), 215-228.
    60. Tombola, F., Carlesso, C., Szabo, I., de Bernard, M., Reyrat, J. M., Telford, J. L., et al. (1999). Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: Possible implications for the mechanism of cellular vacuolation. Biophysical Journal, 76(3), 1401-1409.
    61. Iwamoto, H., Czajkowsky, D. M., Cover, T. L., Szabo, G., & Shao, Z. (1999). VacA from helicobacter pylori: A hexameric chloride channel. FEBS Letters, 450(1-2), 101-104.
    62. Szabo, I., Brutsche, S., Tombola, F., Moschioni, M., Satin, B., Telford, J. L., et al. (1999). Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of helicobacter pylori is required for its biological activity. The EMBO Journal, 18(20), 5517-5527.
    63. Nakayama, M., Kimura, M., Wada, A., Yahiro, K., Ogushi, K., Niidome, T., et al. (2004). Helicobacter pylori VacA activates the p38/activating transcription factor 2-mediated signal pathway in AZ-521 cells. The Journal of Biological Chemistry, 279(8), 7024-7028.
    64. Kimura, M., Goto, S., Wada, A., Yahiro, K., Niidome, T., Hatakeyama, T., et al. (1999). Vacuolating cytotoxin purified from helicobacter pylori causes mitochondrial damage in human gastric cells. Microbial Pathogenesis, 26(1), 45-52.
    65. Galmiche, A., Rassow, J., Doye, A., Cagnol, S., Chambard, J. C., Contamin, S., et al. (2000). The N-terminal 34 kDa fragment of helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. The EMBO Journal, 19(23), 6361-6370.
    66. Willhite, D. C., & Blanke, S. R. (2004). Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cellular Microbiology, 6(2), 143-154.
    67. Willhite, D. C., Cover, T. L., & Blanke, S. R. (2003). Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation. The Journal of Biological Chemistry, 278(48), 48204-48209.
    68. Pai, R., Cover, T. L., & Tarnawski, A. S. (1999). Helicobacter pylori vacuolating cytotoxin (VacA) disorganizes the cytoskeletal architecture of gastric epithelial cells. Biochemical and Biophysical Research Communications, 262(1), 245-250.
    69. Amieva, M. R., Vogelmann, R., Covacci, A., Tompkins, L. S., Nelson, W. J., & Falkow, S. (2003). Disruption of the epithelial apical-junctional complex by helicobacter pylori CagA. Science (New York, N.Y.), 300(5624), 1430-1434.
    70. Terres, A. M., Pajares, J. M., Hopkins, A. M., Murphy, A., Moran, A., Baird, A. W., et al. (1998). Helicobacter pylori disrupts epithelial barrier function in a process inhibited by protein kinase C activators. Infection and Immunity, 66(6), 2943-2950.
    71. Boncristiano, M., Paccani, S. R., Barone, S., Ulivieri, C., Patrussi, L., Ilver, D., et al. (2003). The helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. The Journal of Experimental Medicine, 198(12), 1887-1897.
    72. Gebert, B., Fischer, W., Weiss, E., Hoffmann, R., & Haas, R. (2003). Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science (New York, N.Y.), 301(5636), 1099-1102.
    73. Allen, L. A., Schlesinger, L. S., & Kang, B. (2000). Virulent strains of helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. The Journal of Experimental Medicine, 191(1), 115-128.
    74. Zheng, P. Y., & Jones, N. L. (2003). Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cellular Microbiology, 5(1), 25-40.
    75. Molinari, M., Salio, M., Galli, C., Norais, N., Rappuoli, R., Lanzavecchia, A., et al. (1998). Selective inhibition of ii-dependent antigen presentation by helicobacter pylori toxin VacA. The Journal of Experimental Medicine, 187(1), 135-140.
    76. Kersulyte, D., Velapatino, B., Mukhopadhyay, A. K., Cahuayme, L., Bussalleu, A., Combe, J., et al. (2003). Cluster of type IV secretion genes in helicobacter pylori's plasticity zone. Journal of Bacteriology, 185(13), 3764-3772.
    77. Llosa, M., & O'Callaghan, D. (2004). Euroconference on the biology of type IV secretion processes: Bacterial gates into the outer world. Molecular Microbiology, 53(1), 1-8.
    78. Zhong, Q., Shao, S. H., Cui, L. L., Mu, R. H., Ju, X. L., & Dong, S. R. (2007). Type IV secretion system in helicobacter pylori: A new insight into pathogenicity. Chinese Medical Journal, 120(23), 2138-2142.
    79. Hofreuter, D., & Haas, R. (2002). Characterization of two cryptic helicobacter pylori plasmids: A putative source for horizontal gene transfer and gene shuffling. Journal of Bacteriology, 184(10), 2755-2766.
    80. Solomon, J. M., & Grossman, A. D. (1996). Who's competent and when: Regulation of natural genetic competence in bacteria. Trends in Genetics : TIG, 12(4), 150-155.
    81. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., & Haas, R. (2000). Translocation of helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science (New York, N.Y.), 287(5457), 1497-1500.
    82. Stein, M., Rappuoli, R., & Covacci, A. (2000). Tyrosine phosphorylation of the helicobacter pylori CagA antigen after cag-driven host cell translocation. Proceedings of the National Academy of Sciences of the United States of America, 97(3), 1263-1268.
    83. Segal, E. D., Falkow, S., & Tompkins, L. S. (1996). Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proceedings of the National Academy of Sciences of the United States of America, 93(3), 1259-1264.
    84. Sharma, S. A., Tummuru, M. K., Blaser, M. J., & Kerr, L. D. (1998). Activation of IL-8 gene expression by helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. Journal of Immunology (Baltimore, Md.: 1950), 160(5), 2401-2407.
    85. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M., et al. (2002). SHP-2 tyrosine phosphatase as an intracellular target of helicobacter pylori CagA protein. Science (New York, N.Y.), 295(5555), 683-686.
    86. Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W. J., & Covacci, A. (2002). c-Src/Lyn kinases activate helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Molecular Microbiology, 43(4), 971-980.
    87. Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F., & Backert, S. (2002). Src is the kinase of the helicobacter pylori CagA protein in vitro and in vivo. The Journal of Biological Chemistry, 277(9), 6775-6778.
    88. Tsutsumi, R., Higashi, H., Higuchi, M., Okada, M., & Hatakeyama, M. (2003). Attenuation of helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal src kinase. The Journal of Biological Chemistry, 278(6), 3664-3670.
    89. Churin, Y., Al-Ghoul, L., Kepp, O., Meyer, T. F., Birchmeier, W., & Naumann, M. (2003). Helicobacter pylori CagA protein targets the c-met receptor and enhances the motogenic response. The Journal of Cell Biology, 161(2), 249-255.
    90. Mimuro, H., Suzuki, T., Tanaka, J., Asahi, M., Haas, R., & Sasakawa, C. (2002). Grb2 is a key mediator of helicobacter pylori CagA protein activities. Molecular Cell, 10(4), 745-755.
    91. Suzuki, M., Mimuro, H., Suzuki, T., Park, M., Yamamoto, T., & Sasakawa, C. (2005). Interaction of CagA with crk plays an important role in helicobacter pylori-induced loss of gastric epithelial cell adhesion. The Journal of Experimental Medicine, 202(9), 1235-1247.
    92. Saadat, I., Higashi, H., Obuse, C., Umeda, M., Murata-Kamiya, N., Saito, Y., et al. (2007). Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature, 447(7142), 330-333.
    93. Peek, R. M.,Jr, & Blaser, M. J. (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nature Reviews.Cancer, 2(1), 28-37.
    94. Moran, A. P. (2007). Lipopolysaccharide in bacterial chronic infection: Insights from helicobacter pylori lipopolysaccharide and lipid A. International Journal of Medical Microbiology : IJMM, 297(5), 307-319.
    95. Raetz, C. R., & Whitfield, C. (2002). Lipopolysaccharide endotoxins. Annual Review of Biochemistry, 71, 635-700.
    96. Nikaido, H. (2003). Molecular basis of bacterial outer membrane permeability revisited. Microbiology and Molecular Biology Reviews : MMBR, 67(4), 593-656.
    97. Moran, A. P., Helander, I. M., & Kosunen, T. U. (1992). Compositional analysis of helicobacter pylori rough-form lipopolysaccharides. Journal of Bacteriology, 174(4), 1370-1377.
    98. Walsh, E. J., & Moran, A. P. (1997). Influence of medium composition on the growth and antigen expression of helicobacter pylori. Journal of Applied Microbiology, 83(1), 67-75.
    99. Moran, A. P., Rietschel, E. T., Kosunen, T. U., & Zahringer, U. (1991). Chemical characterization of campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose. Journal of Bacteriology, 173(2), 618-626.
    100. Aspinall, G. O., Monteiro, M. A., Pang, H., Walsh, E. J., & Moran, A. P. (1996). Lipopolysaccharide of the helicobacter pylori type strain NCTC 11637 (ATCC 43504): Structure of the O antigen chain and core oligosaccharide regions. Biochemistry, 35(7), 2489-2497.
    101. Monteiro, M. A., Chan, K. H., Rasko, D. A., Taylor, D. E., Zheng, P. Y., Appelmelk, B. J., et al. (1998). Simultaneous expression of type 1 and type 2 lewis blood group antigens by helicobacter pylori lipopolysaccharides. molecular mimicry between h. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. The Journal of Biological Chemistry, 273(19), 11533-11543.
    102. Monteiro, M. A., St Michael, F., Rasko, D. A., Taylor, D. E., Conlan, J. W., Chan, K. H., et al. (2001). Helicobacter pylori from asymptomatic hosts expressing heptoglycan but lacking lewis O-chains: Lewis blood-group O-chains may play a role in helicobacter pylori induced pathology. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire, 79(4), 449-459.
    103. Heneghan, M. A., McCarthy, C. F., & Moran, A. P. (2000). Relationship of blood group determinants on helicobacter pylori lipopolysaccharide with host lewis phenotype and inflammatory response. Infection and Immunity, 68(2), 937-941.
    104. Green, C. (1989). The ABO, lewis and related blood group antigens; a review of structure and biosynthesis. FEMS Microbiology Immunology, 1(6-7), 321-330.
    105. Edwards, N. J., Monteiro, M. A., Faller, G., Walsh, E. J., Moran, A. P., Roberts, I. S., et al. (2000). Lewis X structures in the O antigen side-chain promote adhesion of helicobacter pylori to the gastric epithelium. Molecular Microbiology, 35(6), 1530-1539.
    106. Appelmelk, B. J., Simoons-Smit, I., Negrini, R., Moran, A. P., Aspinall, G. O., Forte, J. G., et al. (1996). Potential role of molecular mimicry between helicobacter pylori lipopolysaccharide and host lewis blood group antigens in autoimmunity. Infection and Immunity, 64(6), 2031-2040.
    107. Moran, A. P., Knirel, Y. A., Senchenkova, S. N., Widmalm, G., Hynes, S. O., & Jansson, P. E. (2002). Phenotypic variation in molecular mimicry between helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. acid-induced phase variation in lewis(x) and lewis(y) expression by H. pylori lipopolysaccharides. The Journal of Biological Chemistry, 277(8), 5785-5795.
    108. Chandan, V., Logan, S. M., Harrison, B. A., Vinogradov, E., Aubry, A., Stupak, J., et al. (2007). Characterization of a waaF mutant of helicobacter pylori strain 26695 provides evidence that an extended lipopolysaccharide structure has a limited role in the invasion of gastric cancer cells. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire, 85(5), 582-590.
    109. Altman, E., Chandan, V., Larocque, S., Aubry, A., Logan, S. M., Vinogradov, E., et al. (2008). Effect of the HP0159 ORF mutation on the lipopolysaccharide structure and colonizing ability of helicobacter pylori. FEMS Immunology and Medical Microbiology, 53(2), 204-213.
    110. Valvano, M. A., Messner, P., & Kosma, P. (2002). Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology (Reading, England), 148(Pt 7), 1979-1989.
    111. Brooke, J. S., & Valvano, M. A. (1996). Molecular cloning of the haemophilus influenzae gmhA (lpcA) gene encoding a phosphoheptose isomerase required for lipooligosaccharide biosynthesis. Journal of Bacteriology, 178(11), 3339-3341.
    112. Brooke, J. S., & Valvano, M. A. (1996). Biosynthesis of inner core lipopolysaccharide in enteric bacteria identification and characterization of a conserved phosphoheptose isomerase. The Journal of Biological Chemistry, 271(7), 3608-3614.
    113. McArthur, F., Andersson, C. E., Loutet, S., Mowbray, S. L., & Valvano, M. A. (2005). Functional analysis of the glycero-manno-heptose 7-phosphate kinase domain from the bifunctional HldE protein, which is involved in ADP-L-glycero-D-manno-heptose biosynthesis. Journal of Bacteriology, 187(15), 5292-5300.
    114. Valvano, M. A., Marolda, C. L., Bittner, M., Glaskin-Clay, M., Simon, T. L., & Klena, J. D. (2000). The rfaE gene from escherichia coli encodes a bifunctional protein involved in biosynthesis of the lipopolysaccharide core precursor ADP-L-glycero-D-manno-heptose. Journal of Bacteriology, 182(2), 488-497.
    115. Coleman, W. G.,Jr. (1983). The rfaD gene codes for ADP-L-glycero-D-mannoheptose-6-epimerase. an enzyme required for lipopolysaccharide core biosynthesis. The Journal of Biological Chemistry, 258(3), 1985-1990.
    116. Ding, L., Seto, B. L., Ahmed, S. A., & Coleman, W. G.,Jr. (1994). Purification and properties of the escherichia coli K-12 NAD-dependent nucleotide diphosphosugar epimerase, ADP-L-glycero-D-mannoheptose 6-epimerase. The Journal of Biological Chemistry, 269(39), 24384-24390.
    117. De Leon, G. P., Elowe, N. H., Koteva, K. P., Valvano, M. A., & Wright, G. D. (2006). An in vitro screen of bacterial lipopolysaccharide biosynthetic enzymes identifies an inhibitor of ADP-heptose biosynthesis. Chemistry & Biology, 13(4), 437-441.
    118. Taylor, P. L., Blakely, K. M., de Leon, G. P., Walker, J. R., McArthur, F., Evdokimova, E., et al. (2008). Structure and function of sedoheptulose-7-phosphate isomerase, a critical enzyme for lipopolysaccharide biosynthesis and a target for antibiotic adjuvants. The Journal of Biological Chemistry, 283(5), 2835-2845.
    119. Haas, R., Meyer, T. F., & van Putten, J. P. (1993). Aflagellated mutants of helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Molecular Microbiology, 8(4), 753-760.
    120. Gerrits, M. M., van der Wouden, E. J., Bax, D. A., van Zwet, A. A., van Vliet, A. H., de Jong, A., et al. (2004). Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of helicobacter pylori. Journal of Medical Microbiology, 53(Pt 11), 1123-1128.
    121. Croxen, M. A., Ernst, P. B., & Hoffman, P. S. (2007). Antisense RNA modulation of alkyl hydroperoxide reductase levels in helicobacter pylori correlates with organic peroxide toxicity but not infectivity. Journal of Bacteriology, 189(9), 3359-3368.
    122. Marolda, C. L., Lahiry, P., Vines, E., Saldias, S., & Valvano, M. A. (2006). Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods in Molecular Biology (Clifton, N.J.), 347, 237-252.
    123. Tsai, C. M., & Frasch, C. E. (1982). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Analytical Biochemistry, 119(1), 115-119.
    124. Harmer, N. J. (2010). The structure of sedoheptulose-7-phosphate isomerase from burkholderia pseudomallei reveals a zinc binding site at the heart of the active site. Journal of Molecular Biology, 400(3), 379-392.
    125. Moran, A. P., Sturegard, E., Sjunnesson, H., Wadstrom, T., & Hynes, S. O. (2000). The relationship between O-chain expression and colonisation ability of helicobacter pylori in a mouse model. FEMS Immunology and Medical Microbiology, 29(4), 263-270.
    126. Seetharaman, J., Rajashankar, K. R., Solorzano, V., Kniewel, R., Lima, C. D., Bonanno, J. B., et al. (2006). Crystal structures of two putative phosphoheptose isomerases. Proteins, 63(4), 1092-1096.
    127. Umamaheswari, A., Pradhan, D., & Hemanthkumar, M. (2010). Identification of potential leptospira phosphoheptose isomerase inhibitors through virtual high-throughput screening. Genomics, Proteomics & Bioinformatics / Beijing Genomics Institute, 8(4), 246-255.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE