簡易檢索 / 詳目顯示

研究生: 徐慶斌
論文名稱: 照光輔助溶膠-凝膠製程對數種鋯鈦酸鉛薄膜特性之研究
指導教授: 胡塵滌
Hu, Chen-Ti
呂正傑
Leu, Ching-Chich
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 123
中文關鍵詞: 鐵電薄膜鋯鈦酸鉛溶膠凝膠紫外光光照輔助製程
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以溶膠-凝膠法所鍍製之PZT系統為主要研究對象,探討光源照光輔助的條件下作烘烤(baking),對三種不同組成與結構之PZT薄膜的結晶行為及電性的影響,討論可能的作用機制。
    實驗結果顯示,紫外光對數種不同PZT薄膜皆具有明顯影響。PZT(Z40)與PZT(Z52)薄膜之結晶方向及表面形貌明顯受UVC與UVA光照效應的影響,且極化值(2Pr)及介電常數獲得提升;PZT(Z60)薄膜只受UVC光照效應的作用,極化值(2Pr)及介電常數略為提升。
    依據TGA、FTIR及UV-Vis.等分析結果與參考相關文獻資料,推測PZT薄膜特性受紫外光影響之主要原因,為溶膠-凝膠鍍膜製程中受紫外光光照效應可促進有機物的分解與揮發,影響薄膜之結晶優選方位及表面形貌,並進一步影響其電性表現。


    第一章 緒論……………………………………………………………..1 1-1 前言……………………………………………………….……….1 1-2 研究方向……………………...…………..……………………….3 第二章 文獻回顧………………………………………………………..4 2-1 鐵電薄膜之簡介………………………..…………………………4 2-1-1 鐵電薄膜之歷史演進………………………………………....4 2-1-2 鐵電材料之結構………………………………………….…...4 2-1-3 鐵電特性………………………………………………….…...5 2-2 鐵電記憶體………………………………………………………..7 2-2-1 歷史沿革………………………………………………………7 2-2-2 記憶體元件上的應用…………………………………………8 2-2-3 鐵電薄膜的可靠度…………………………………………..10 2-3 鐵電薄膜之製備…………………………………………………11 2-3-1 溶膠—凝膠法(Sol-Gel)……………………………………...12 2-3-2 配方溶液的配製……………………………………………..13 2-3-3 薄膜披覆製程………………………………………………..14 2-3-4 低溫焦化熱處理……………………………………………..15 2-3-5 高溫結晶與緻密化處理……………………………………..15 2-4 鐵電材料-鋯鈦酸鉛(PZT)系統………………………………..16 2-4-1 鋯鈦酸鉛之相圖……………………………………………..16 2-4-2 極化軸(polar axis)與極化向量(polar vector)………………..17 2-5 光效應(Photo-effect)…………………………………………..…17 2-6 鐵電薄膜之紫外光輔助鍍膜製程………………………………20 第三章 實驗程序……………………………………………………....30 3-1 基板的備製……………………………………………………....30 3-1-1擴散阻絕層及黏著層的製備………………………………...30 3-1-2 白金底電極的製備………………………………………..…31 3-2 PZT鐵電薄膜製備…………………………………………….....31 3-2-1 PZT溶膠的製備……………………………………………...31 3-2-2 PZT薄膜的鍍製及光照輔助製程…………………………...33 3-3 PZT溶膠之分析………………………………………………….35 3-4 鐵電薄膜性質之量測與分析……………………………………36 3-4-1電性量測……………………………………………………...36 3-4-2 物性分析……………………………………………………..37 第四章 結果與討論……………………………………………………45 4-1熱重量分析(TGA)………………………………………………..45 4-2 紫外光-可見光光譜分析(UV-Vis. Spectrum)………………....46 4-3 傅立葉轉換紅外線光譜分析(FTIR Spectrum)………………….47 4-4 XRD晶體結構分析……………………………………………....48 4-4-1 富鈦(Z40)的PZT薄膜……………………………………….50 4-4-2 MPB成分(Z52)下的PZT薄膜………………………………51 4-4-3 富鋯(Z60)的PZT薄膜……………………………………….52 4-4-4 照光對不同成分PZT結晶性的影響……………………….52 4-5表面顯微結構、粗糙度分析與SEM橫截面…………………...53 4-5-1 PZT(Z40)之表面及橫截面分析……………………………...53 4-5-2 PZT(Z52)之表面及橫截面分析……………………………...54 4-5-3 PZT(Z60)之表面及橫截面分析……………………………...55 4-5-4 照光對不同成分PZT表面形貌之影響…………………….56 4-6 鐵電特性之量測…………………………………………………57 4-6-1 PZT(Z40)之鐵電特性量測…………………………………...57 4-6-2 PZT(Z52)之鐵電特性量測…………………………………...57 4-6-3 PZT(Z60)之鐵電特性量測…………………………………...57 4-6-4 照光對不同成分PZT鐵電特性之影響…………………….58 4-7 介電特性量測……………………………………………………59 4-7-1 PZT(Z40)之介電特性………………………………………...59 4-7-2 PZT(Z52)之介電特性………………………………………...60 4-7-3 PZT(Z60)之介電特性………………………………………...60 4-7-4 不同成分PZT之介電特性………………………………….61 4-8 電流密度量測……………………………………………………61 4-9 薄膜疲勞測試之分析……………………………………………62 4-9-1 PZT(Z40)薄膜疲勞測試……………………………………...62 4-9-2 PZT(Z52)薄膜疲勞測試……………………………………...62 4-9-3 PZT(Z60)薄膜疲勞測試……………………………………...62 4-9-4 不同成分PZT薄膜之疲勞特性分析……………………….63 第五章 結論…………………………………………………………..116 附錄……………………………………………………………………118 參考文獻………………………………………………………………119

    [1] 陳瀅如,"添加微細粉對鈦酸鉛鍍膜製程與特性之研究",清華大學碩士論文 (1998)
    [2] 鄭晃忠、史德智,"極大型機鐵電路之鐵電材料",電子月刊 5 (6) (1999)
    [3] 陳銘森,"鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究",清華大學博士論文 (1996)
    [4] 鍾為烈,鐵電體物理學 (科學出版社,1996)
    [5] Y. Xu, Ferroeletric Material and their application (North-Holland, Amsterdam, 1991)
    [6] S.Y. Wu, IEEE transaction Electron Devices WD-21 (8), 656 (1974)
    [7] 彭成鑑,"強介電材料在動態隨機記憶體上的應用",工業材料 107,72-79 (1998)
    [8] 詹世雄、呂正傑,"鐵電記憶體簡介",毫微米通訊 5 (4),33-38 (1998)
    [9] K. Amanuma, T. Hase, and Y. Miyasaka, "Preparation and ferroelectric properties of SrBi2Ta2O9 thin films," Applied Physics Letters 66 (2), 221 (1995)
    [10] Y. Shimada, M. Azuma, K. Nakao et al., "Retention characteristics of a ferroelectric memory based on SrBi2(Ta,Nb)2O9," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36 (9B), 5912 (1997)
    [11] H. N. AlShareef, D. Dimos, W. L. Warren et al., "Voltage offsets and imprint mechanism in SrBi2Ta2O9 thin films," Journal of Applied Physics 80 (8), 4573 (1996)
    [12] 陳三元,"強介電薄膜之液相化學法製作",工業材料 108,100-111 (1995)
    [13] Robert W. Schwartz, "Chemical solution deposition of perovskite thin films," Chemistry of Materials 9 (11), 2325 (1997)
    [14] 梁振偉,"雷射剝鍍法製作BMT緩衝層及對其PZT薄膜之影響研究",清華大學碩士論文 (2003)
    [15] B. Noheda, D. E. Cox, G. Shirane et al., "A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution," Applied Physics Letters 74 (14), 2059 (1999)
    [16] W. Gong, J. F. Li, L. Li et al., "Combined effect of preferential orientation and Zr/Ti atomic ratio on electrical properties of Pb(ZrxTi1-x)O3 thin films," 96 (1), 590 (2004)
    [17] B. Noheda, J. A. Gonzalo, L. E. Cross et al., "Tetragonal-to- monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3," Physical Review B 61 (13), 8687 (2000)
    [18] H. Cao, B. Fang, H. Luo et al., "Crystal orentation dependence of dielectric and piezoelectric properties of tetragonal Pb(Mg1/3Nb2/3)O3-38%PbTiO3 single crystal," Materials Research Bulletin 37, 2135 (2002)
    [19] H. Imai, A. Tominaga, N. Asakuma et al., "Ultraviolet-reduced reduction and crystallization of indium oxide films," Journal of Applied Physics 85, 203 (1999)
    [20] N. Asakuma, T. Fukui, H. Hirashima et al., "Ultraviolet-laser-induced crystallization of sol-gel derived inorganic oxide films," Journal of Sol-Gel Science and Technology 19, 333 (2000)
    [21] N. Asakuma, H. Hirashima, and H. Imai, "Photocrystallization of amorphous ZnO," Journal of Applied Physics 92, 5707 (2002)
    [22] N. Asakuma, H. Hirashima, H. Imai et al., "Photoreduction of amorphous and crystalline ZnO films," Japanese Journal of Applied Physics 41, 3909 (2002)
    [23] N. Asakum, H. Hirashima, M. Toki et al., "Crystallization and reduction of sol-gel-derived zinc oxide films by irradiation with ultraviolet lamp," Journal of Sol-Gel Science and Technology 26, 181 (2003)
    [24] Y. Fujita and T. Kwan, "Photodesorption and photoadsorption of oxygen on zinc oxide," Bulletin of the Chemical Society of Japan 31, 379b (1958)
    [25] V. Chakarian, T. D. Durbin, J. A. Yarmoff et al., "Formation of surface F-centers on CaF2/Si(111)," Physical Review B 48, 18332 (1993)
    [26] K. Arai, H. Imai, H. Imagawa et al., "Two-photon processes in defect formation by excimer lasers in synthetic silica glass," Applied Physics Letters 53, 1891 (1988)
    [27] N. Tohge, K. Shinmou, and T. Minami, "Effects of UV-irradiation on the formation of oxide thin films from chemically modified metal-alkoxides," Journal of Sol-Gel Science and Technology 2, 581 (1994)
    [28] H. Imai, M. Yasumori, H. Onuki et al., "Significant densification of sol-gel derived amorphous silica films by vacuum ultraviolet irradiation," Journal of Applied Physics 79, 8304 (1996)
    [29] J. J. Yu, J. Y. Zhang, and I. W. Boyd, "Formation of stable zirconium oxide on silicon by photo-assisted sol-gel processing," Applied Surface Science 186, 190 (2002)
    [30] Q. Fang, J. Y. Zhang, I. W. Boyd et al., "High-k dielectrics by UV photo-assisted chemical vapour deposition," Microelectronic Engineering 66, 621 (2003)
    [31] S. Y. Son, P. Kumar, R. K. Singh et al., "High efficiency nitrogen incorporation technique using ultraviolet assisted low temperature process for hafnia gate dielectric," Applied Physics Letters 92, 092906 (2008)
    [32] C. J. Kim, D. S. Yoon, Z. T. Jiang et al., "Investigation of the drying temperature dependence of the orientation in sol-gel processed PZT thin films," Journal of Materials Science 32, 1213 (1997)
    [33] G. T. Park, C. S. Park, H. E. Kim et al., "Orientation control of sol-gel-derived lead zirconate titanate film by addition of polyvinylpyrrolidone," Journal of Materials Research 20, 882 (2005)
    [34] A. Li, D. Wu, N. Ming et al., "Effect of processing on the characteristics of SrBi2Ta2O9 films prepared by metalorganic decomposition," Journal of Applied Physics 88, 1035 (2000)
    [35] M. L. Calzada, I. Bretos, L. Pardo et al., "Low-temperature processing of ferroelectric thin films compatible with silicon integrated circuit technology," Advanced Materials 16, 1620 (2004)
    [36] M. L. Calzada, I. Bretos, L. Pardo et al., "Low-temperature ultraviolet sol-gel photoannealing processing of multifunctional lead-titanate-based thin films," Journal of Materials Research 22, 1824 (2007)
    [37] J. Y. Hwang, S. A. Lee, S. Y. Jeong et al., "UV-exposure effect on ferroelectricity of the sol-gel processed PZT thin film," Integrated Ferroelectrics 62, 97 (2004)
    [38] S. A. Lee, S. Y. Jeong, C. R. Cho et al., "A study of UV-photolysis effects on ferroelectricity in PZT thin films," Integrated Ferroelectrics 64, 201 (2004)
    [39] S. R. Kumar, S. Habouti, M. Es-Souni et al., "Control of microstructure and functional properties of PZT thin films via UV assisted pyrolysis," Journal of Sol-Gel Science and Technology 42, 309 (2007)
    [40] Z. Huang, Q. Zhang, and R. W. Whatmore, "Structural development in the early stages of annealing of sol-gel prepared lead zirconate titanate thin films," Journal of Applied Physics 86 (3), 1662 (1999)
    [41] A. Wu, P. M. Vilarinho, I. M. Miranda Salvado et al., "Early stages of crystallization of sol-gel-derived lead zirconate titanate thin films," Chemistry of Materials 15 (5), 1147 (2003)
    [42] S. Y. Chen and I. W. Chen, "Temperature–time texture transition of Pb(Zr1−xTix)O3 thin films: I, role of Pb-rich intermediate phases," Journal of the American Ceramic Society 77 (9), 2332 (1994)
    [43] S. Y. Chen, "Texture evolution and electrical properties of oriented PZT thin films," Materials Chemistry and Physics 45, 159 (1996)
    [44] A. Wu, Z. Zhou, J. L. Baptista et al., "Effect of lead zirconate titanate seeds on PtxPb formation during the pyrolysis of lead zirconate titanate thin films," Journal of the American Ceramic Society 85 (3), 641 (2002)
    [45] W. Gong, J. F. Li, L. Li et al., "Effect of pyrolysis temperature on preferential orientation and electrical properties of sol-gel derived lead zirconate titanate films," Journal of the European Ceramic Society 24, 2977 (2004)
    [46] S. Yokoyama, Y. Honda, H. Morioka et al., "Compositional dependence of electrical properties of highly (100)-/(001)- oriented Pb(Zr,Ti)O3 thick films prepared on Si-substrates by metalorganic chemical vapor deposition," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 42, 5922 (2003)
    [47] W. H. Shepherd, "Fatigue and Aging in Sol-Gel Derived PZT ThinFilms," Materials Research Society Symposium Proceedings‎ 200, 277 (1990)
    [48] H. N. Al-shareef, B. A. Tuttle, M. A. Rodriguez et al., "Low Temperature Processing of Nb-doped Pb(Zr, Ti)O3 Capacitors with La0.5Sr0.5CoO3 Electrodes," Applied Physics Letters 68, 272 (1996)
    [49] Lide, David R., "CRC handbook of chemistry and physics," CRC 88th Ed., P6-65 (2008)
    [50] M. Sreemany, A. Bose, and S. Sen, "Influence of chemical composition, phase and thickness of TiOx (x≤2) seed layer on the growth and orientation of the perovskite phase in sputtered PZT thin films," Materials Chemistry and Physics 115, 453 (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE