研究生: |
布巴倫 Ramadoss, Boobalan |
---|---|
論文名稱: |
釕和鈷金屬催化醯胺化合物進行碳-氫鍵之炔基化或環化反應之研究 Ruthenium-catalyzed C–H Alkynylation Reaction of Aromatic Amides with Hypervalent Iodine-Alkyne Reagents and Cobalt-Catalyzed Annulation Reactions of Amides with Allenes via C–H Bond Activation |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
劉瑞雄
Liu, Rai-Shung 蔡易州 Tsai, Yi-Chou 莊士卿 Chuang, Shih-Ching 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 303 |
中文關鍵詞: | 釕金屬催化反應 、環化反應 、醯胺 、高價碘炔試劑 、炔化反應 、碳氫鍵活化 、鈷金屬催化反應 、丙二烯 |
外文關鍵詞: | Ruthenium-Catalyzed Reaction, Annulation Reactions, Amides, Hypervalent Iodine-Alkyne Reagent, Alkynylation, C-H Activation, Cobalt-Catalyzed Reactions, Allenes |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文主要探討釕金屬與鈷金屬作為催化劑,使用苯并醯胺作為引導基,與高價碘試劑進行鄰位碳-氫鍵活化之炔基化耦合反應,或與丙二烯進行碳-氫鍵活化之環化反應,成功開發新穎之有機合成途徑。
第一章節中探討探討二價釕金屬催化鄰位碳-氫鍵炔基化反應,使用N-甲氧基苯并醯胺作為引導基,與高價碘試劑1-[(芳基乙炔基]-1,2-苯碘酰-3(1H)-酮進行炔基化反應,合成鄰位炔基化之苯并醯胺化合物。此反應係經由釕金屬進行碳-氫鍵活化、與碘試劑進行氧化加成,再進行還原脫去並得到相對應之產物。
第二章探討二價鈷金屬催化醯胺化合物與丙二烯之氧化環化反應,合成異喹啉酮與吡啶酮衍生物。此反應利用氨基喹啉作為引導基,經由鈷金屬進行碳-氫鍵活化後,於丙二烯之末端碳進行加成反應,再經由還原脫去與雙鍵異構化生成最終反應產物。
第三章節則講述三價鈷金屬催化醯胺化合物與丙二烯進行[4+1]環化反應,高效率合成一系列之異吲哚酮衍生物。此反應機構係經由碳-氫鍵活化生成鈷金屬雜環中u間體、丙二烯加成反應、β-氫脫去反應與分子內氫化胺化反應,並得到反應最終產物。三烯中間體的分離與鑑定間接證明了此反應之反應機構。
ABSTRACT
In this dissertation, Ru-catalyzed alkynylation and Co-catalyzed annulation reactions have been discussed. For the better understanding, this dissertation has been split into three chapters. Chapter 1 discusses Ru(II)-catalyzed benzamide directed ortho C–H alkynylation reactions with hypervalent iodine reagents, and Chapter 2 demonstrates bidentate-directing group assisted annulation of 8-aminoquinoline amides with allenes under CoII-catalytic conditions to synthesize isoquinolones scaffold. Finally, chapter 3 describes a novel and economical CoIII-catalyzed annulation reaction of benzamides with allenes to make a novel isoindolone structural cores.
Chapter 1 deals with Ru(II)-catalyzed ortho C–H alkynylation reactions of N-methoxy benzamide with 1-((triisopropylsilyl)ethynyl)-1l3-benzo[d][1,2]iodaoxol-3(1H)-one (TIPS-EBX) as an alkynylating reagent. This reaction commences via Ru-carboxylate assisted C–H cleavage followed by oxidative addition of hypervalent iodine reagent with ruthenacycle, reductive elimination and ligand exchange process to offer the ortho-alkynylated benzamides.
Chapter 2 elaborates CoII-catalyzed oxidative annulation of amides with allenes. This catalytic reaction proceeds through aminoquinoline‐directed C–H activation followed by the migratory insertion into the terminal carbon of allene, reductive elimination, and eventually, double bond isomerization to give isoquinolin‐1(2H)‐ones and pyridinones in excellent yields.
Chapter 3 demonstrates an economical Co(III)-catalyzed [4+1] annulation reaction of N-methyl benzamide with allene to afford an isoindolone moiety in good to excellent yields. The novel annulation reaction proceeds via metallacycle formation, allene insertion followed by ꞵ-hydride elimination, and finally, intramolecular 1,2-hydroamination to give the corresponding annulation product in excellent yield with broad substrate scope. Isolation of triene intermediate was achieved that further reveals the plausible mechanism of this reaction.
References:
Chapter-1
1. a) Siemsen, p.; Livingston, R. C.; Diederich, F. Angew. Chem. 2000, 112, 2740; Angew. Chem. Int. Ed. 2000, 39, 2632. b) Negishi, E.; Anastasia, L. Chem. Rev. 2003, 103, 1979. c) Tykwinski, R. R. Angew. Chem. 2003, 115, 1604; Angew. Chem. Int. Ed. 2003, 42, 1566. d) Toyota, S. Chem. Rev. 2010, 110, 5398. e) Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology, and Material Science, Wiley-VCH, Weinheim, 2005.
2. a) Chinchilla, R.; Najera, C. Chem. Rev. 2007, 107, 874; b) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46; c) Sonogashira, K. in Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 1998, p. 203; d) Plenio, H. Angew. Chem. 2008, 120, 7060; Angew. Chem. Int. Ed. 2008, 47, 6954.
3. For selected examples of alkynylation using terminal alkynes, see a) Wei, Y.; Zha,o H.; Kan, J.; Su, W.; Hong, M. J. Am. Chem. Soc. 2010, 132, 2522; b) Matsuyama, N.; Kitahara, M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358; c) Kim, S. H.; Yoon, J.; Chang, S. Org. Lett. 2011, 13, 1474; d) Yang, L.; Zhao, L.; Li, C.-J. Chem. Commun. 2010, 46, 4184; e) Jie, X.; Shang, Y.; Hu, P.; Su, W. Angew. Chem. 2013, 125, 3718; Angew. Chem. Int. Ed. 2013, 52, 3630.
4. Selected reviews: (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731. (b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2009, 110, 624. (d) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem - Eur. J. 2010, 16, 2654. (e) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (f) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2010, 111, 1293. (g) McMurray, L.; O’Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885. (h) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976.
5. a) Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem. 2009, 121, 9510; Angew. Chem. Int. Ed. R.; Waser, J. Chem. Eur. J. 2012, 18, 5655; e) Li, Y.; Brand, J. P.; Wase, J. Angew. Chem. 2013, 125, 6875; Angew. Chem. Int. Ed. 2013, 52, 6743; f) Tolnai, G. L.; Ganss, S.; Brand, J. P.; Waser, J. Org. Lett. 2013, 15, 112.
6. a) Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am. Chem. Soc. 2010, 132, 2522. b) Matsuyama, N.; Kitahara, M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2358. c) Jie, X.; Shang, Y.; Hu, P.; Su, W. Angew. Chem., Int. Ed. 2013, 52, 3630.
7. a) Zhdankin,V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523; b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299; c) Zhdankin, V. V. Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, New York, 2014; d) Wirth, T. Hypervalent iodine chemistry: modern developments in organic synthesis, Vol. 224, Springer, New York, 2003; e) Wirth, T. Angew. Chem. Int. Ed. 2005, 44, 3656; Angew. Chem. 2005, 117, 3722; f) Dohi, T.: Kita, Y. Chem. Commun. 2009, 2073.
8. a) Zhdankin, V. V. Rev. Heteroat. Chem. 1997, 17, 133; b) Zhdankin, V. V. Curr. Org. Synth. 2005, 2, 121.
9. Reviews on C-H arylation: a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. b) Ackermann, L. Modern arylation methods, Wiley-VCH: Weinheim, 2009. c) Bonin, H.; Sauthier, M.; Felpin, F.-X. Adv. Synth. Catal. 2014, 356, 645. d) Djakovitch, L.; Felpin, F.-X. ChemCatChem 2014, 6, 2175. e) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev. 2015, 115, 12138. f) Davies, H. M. L.; Morton, D. J. Org. Chem. 2016, 81, 343. g) Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341. h) Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Tetrahedron 2016, 72, 1795.
10. Reviews on C-H alkenation: a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826. b) Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170. c) Mo, F.; Tabor, J. R.; Dong, G. Chem. Lett. 2014, 43, 264. d) Shi, G.; Zhang, Y. Adv. Synth. Catal. 2014, 356, 1419. e) Zhang, F.; Spring, D. R. Chem. Soc. Rev. 2014, 43, 6906. f) Zheng, Q.-Z.; Jiao, N. Tetrahedron Lett. 2014, 55, 1121. g) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. h) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053. i) Huang, H.; Ji, X.; Wu, W.; Jiang, H. Chem. Soc. Rev. 2015, 44, 1155.
11. (a) Seregin, I. V.; Ryabova, V.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 7742. b) Brand, J. P.; Charpentier, J. R.; Waser, J. Angew. Chem. Int. Ed. 2009, 48, 9346. c) Brand, J. P.; Waser, J.; Angew. Chem. Int. Ed. 2010, 49, 7304. d) Haro, T. D.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512. e) Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2012, 14, 354. f) Collins, K. D.; Lied, F.; Glorius, F. Chem. Commun. 2014, 50, 4459. g) Feng, C.; Loh, T.-P. Angew. Chem. Int. Ed. 2014, 53, 2722. h) Jeong, J.; Patel, P.; Hwang, H.; Chang, S. Org. Lett. 2014, 16, 4598. i) Xie, F.; Qi, Z.; Yu, S.; Li, X.; J. Am. Chem. Soc. 2014, 136, 4780. (j) Zhang, X.; Qi, Z.; Gao, J.; Li, X. Org. Biomol. Chem. 2014, 12, 9329. k) Brachet, E.; Belmont, P. J. Org. Chem. 2015, 80, 7519. l) Finkbeiner, P.; Kloeckner, U.; Nachtsheim, B. J. Angew. Chem. Int. Ed. 2015, 54, 4949. m) Guan, M.; Chen, C.; Zhang, J.; Zeng, R.; Zhao, Y. Chem. Commun. 2015, 51, 12103. n) Jin, N.; Pan, C.; Zhang, H.; Xu, P.; Cheng, Y.; Zhu, C. Adv. Synth. Catal. 2015, 357, 1149. o) Yang, X.-F.; Hu, X.-H.; Feng, C.; Loh, T.-P. Chem. Commun. 2015, 51, 2532. p) Zhou, J.; Shi, J.; Qi, Z.; Li, X.; Xu, H. E.; Yi, W. ACS Catal. 2015, 5, 6999. q) Sauermann, N.; González, M. J.; Ackermann, L. Org. Lett. 2015, 17, 5316. r) Chatani, N.; Tobisu, M.; Ano, Y. Synlett 2012, 23, 2763. s) Kang, D.; Hong, S. Org. Lett. 2015, 17, 1938.
12. Selected reviews on Ru-catalyzed C-H functionalization: a) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. b) Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886. c) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. d) Manikandan, R.; Jeganmohan, M. Org. Biomol. Chem. 2015, 13, 10420. e) Dana, S.; Yadav, M. R.; Sahoo, A. K. Top. Organomet. Chem. 2016, 55, 189. f) Zha, G.-F.; Qin, H.-L.; Kantchev, E. A. B. RSC Adv. 2016, 6, 30875.
13. Selected reports on Ru-catalyzed C-H functionalization reaction: a) Padala, K.; Jeganmohan, M. Chem. Eur. J. 2014, 20, 4092. b) Fernández-Salas, J. A.; Manzini, S.; Piola, L.; Slawin, A. M. Z.; Nolan, S. P. Chem. Commun. 2014, 50, 6782. c) Hung, C.-H.; Gan-deepan, P.; Cheng, C.-H. ChemCatChem 2014, 6, 2692. d) Bettada-pur, K. R.; Lanke, V.; Prabhu, K. R. Org. Lett. 2015, 17, 4658. e) Cheng, H.; Dong, W.; Dannenberg, C. A.; Dong, S.; Guo, Q.; Bolm, C. ACS Catal. 2015, 5, 2770. f) Liu, B.; Li, B.; Wang, B. Chem. Commun. 2015, 51, 16334. g) Manikandan, R.; Madasamy, P.; Jeganmohan, M. Chem. Eur. J. 2015, 21, 13934. h) Yadav, M. R.; Shankar, M.; Ramesh, E.; Ghosh, K.; Sahoo, A. K. Org. Lett. 2015, 17, 1886. i) Zhu, Y.-Q.; Dong, L. J. Org. Chem. 2015, 80, 9973. j) Manoharan, R.; Jeganmohan, M. Chem. Commun. 2015, 51, 2929. k) Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 264. l) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666. m) Manikandan, R.; Madasamy, P.; Jeganmohan, M. ACS Catal. 2016, 6, 230. n) Okada, T.; Nobushige, K.; Satoh, T.; Miura, M. Org. Lett. 2016, 18, 1150. o) Sun, Y.-H.; Sun, T.-Y.; Wu, Y.-D.; Zhang, X.; Rao, Y. Chem. Sci. 2016, 7, 2229. p) Zell, D.; Warratz, S.; Gelman, D.; Garden, S. J.; Ackermann, L. Chem. Eur. J. 2016, 22, 1248. q) Raghuvanshi, K.; Zell, D.; Rauch, K.; Ackermann, L. ACS Catal. 2016, 6, 3172.
14. Jeganmohan, M. Chem. Commun. 2015, 51, 2929. k) Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 264. l) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666. m) Manikandan, R.; Madasamy, P.; Jeganmohan, M. ACS Catal. 2016, 6, 230. n) Okada, T.; Nobushige, K.; Satoh, T.; Miura, M. Org. Lett. 2016, 18, 1150. o) Sun, Y.-H.; Sun, T.-Y.; Wu, Y.-D.; Zhang, X.; Rao, Y. Chem. Sci. 2016, 7, 2229. p) Zell, D.; Warratz, S.; Gelman, D.; Garden, S. J.; Ackermann, L. Chem. Eur. J. 2016, 22, 1248. q) Raghuvanshi, K.; Zell, D.; Rauch, K.; Ackermann, L. ACS Catal. 2016, 6, 3172.
15. Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.
16. Guimond, N.; Gouliaras, C.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908.
17. Fenner, S.; Ackermann, L. Org. Lett., 2011, 13, 6548.
18. Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C. BookerMilburn, K. I. N.; Org. Lett. 2011, 13, 5329.
19. Rakshit, S.; Grohmann, C.; Besset, G.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
20. Li, B.; Ma, J.; Wang, N.; Feng, H.; Xu, S.; Wang, B. Org. Lett. 2012, 14, 736
21. Karthikeyan, J.; Haridharan, R.; Cheng, C.-H. Angew. Chem. Int. Ed. 2012, 51, 12343
22. Senthilkumar, N.; Parthasarathy, K.; Gandeepan, P.; Cheng, C,-H. Chem. Asian J. 2013, 8, 2175.
23. Zhang, S.-S.; Wu, J.-Q.; Lao, Y.-X.; Liu, X.-G.; Liu, Y.; Lv, W.-X.; Tan, D.-H.; Zeng, Y.-24. Wang, H. Org. Lett. 2014, 16, 6412.
25. Zhang, S.-S.; Wu, J.-Q.; Liu, X.; Wang, H. ACS Catal. 2015, 5, 210.
26. Phatake, R. S.; Patel, P.; Ramana, C. V. Org. Lett. 2016, 18, 2828.
27. Ohta, Y.; Tokimizu, Y.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett., 2010. 12, 3963.
28. Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330.
29. Frei, R.; Waser, J. J. Am. Chem. Soc. 2013, 135, 9620.
30. Zhang, Z. Z.; Liu, B.; Wang, C. Y.; Shi, B. F. Org. Lett. 2015, 17, 4094.
31 Liu, B.; Wang, X.; Ge, Z.; Li, R. Org. Biomol. Chem., 2016, 14, 2944.
32. Yeh, C.-H.; Chen, W.-C.; Gandeepan, P.; Hong, Y.-C.; Shih, C.-H.; Cheng, C.-H. Org. Biomol. Chem. 2014, 12, 9105.
33. CCDC 1462810 and 1462811.
34. a) Jones, W. D.; Feher, F. J. Acc. Chem. Res. 1989, 22, 91. b) Jones, W. D. Acc. Chem. Res. 2003, 36, 140. c) Gómez-Gallego, M.; Sierra, M. A. Chem. Rev. 2011, 111, 4857. d) Simmons, E. M.; Hart-wig, J. F. Angew. Chem. Int. Ed. 2012, 51, 3066.
35. Perrin, D. D. Armarego, W. L. F.; In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
36. Fisher, L. E.; Caroon, J. M.; Jahangir Stabler, S. R.; Lundberg, S.; Muchowski, J. M. J. Org. Chem. 1993, 58, 3643.
37. Helal, C. J.; Magriotis, P. A.; Corey, E. J. J. Am. Chem. Soc. 1996, 118, 10938.
38. Waser, J.; Brand, J. Synthesis 2012, 44, 1155.
39. Nicolai, S.; Piemontesi, C.; Waser, J. Angew. Chem. Int. Ed. 2011, 50, 4680.
40. Zhang X.-S.; Zhang Y.-F.; Li Z.-W.; Luo F.-X.; Shi, Z.-J. Angew. Chem. Int. Ed. 2015, 54, 5478.
41. Zhdankin V. V.; Kuehl C. J.; Krasutsky A. P.; Bolz J. T.; Simonsen A. J. J. Org. Chem. 1996, 61, 6547.
42. Le Vaillant, F.; Courant, T.; Waser, J. Angew. Chem. Int. Ed. 2015, 54, 11200.
Chapter-2
1. a) Zhang,Y. J.; Skuca, E.; M. J. Krische, M. J. Org. Lett. 2009, 11, 4248; b). Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2010, 49, 8181; c) Wang, H. Glorius, F.; Angew. Chem., Int. Ed. 2012, 51, 7318; d) Zeng, R.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2012, 134, 9597; e) Zeng, R.; Wu, S.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2013, 135, 18284; f) Zeng, R.; Ye, J.; Fu, C.; Ma, S. Adv. Synth. Catal. 2013, 355, 1963; g) Ye, B. Cramer, N. J. Am. Chem. Soc. 2013, 135, 636; h) Rodríguez, A.; Albert, J.; Ariza, X.; Garcia, J.; Granell, J.; Farràs, J.; Mela, A. L.; Nicolás, E. J. Org. Chem. 2014, 79, 9578; i) Wu, S.; Zeng, R.; Fu, C.; Yu, Y.; Zhang, X.; Ma, S. Chem. Sci. 2015, 6, 2275; j) Xia, X.; Wang, Y.; Zhang, L.; Song, X.; Liu, X.; Liang, Y. Chem.—Eur. J. 2014, 20, 5087; k) Nakanowatari, S.; Ackermann, L. Chem.—Eur. J. 2015, 21, 16246; l) Casanova, L; Seoane, A.; Mascareñas, J. L.; Gulías, M. Angew. Chem., Int. Ed. 2015, 54, 2374; m) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem.—Eur. J. 2015, 21, 9198; n) Kuppusamy, P.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2015, 17, 3846; o) Kuppusamy, R.; Muralirajan, K.; Cheng, C.-H. ACS Catal. 2016, 6, 3909.
2. a) Trost, B. M. Science 1991, 254, 1471; b) Trost, B. M. Angew. Chem. Int. Ed. 1995, 34, 259. (c) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
3. a) Duong, H. A.; Gillgan R. E.; Cooke, M. L.; Phipps, R. J.; Guant, M. J. Angew. Chem., Int. Ed. 2011, 50, 540 Phipps, R. J.; Guant, M. J. Science, 2009, 323, 1593.
4. For selected recent reviews on C−H bond functionalization, see: a) Colby, D. A.; Bergman, R.; G.; Ellman, J. A. Chem. Rev. 2010, 110, 624; b) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215; c) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293; d) Ackermann, L. Chem. Rev. 2011, 111, 1315; e) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780; f) Baudoin, O. Chem. Soc. Rev. 2011, 40, 4902; g) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062; h) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068; i) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936; j) Gaillard, S.; Cazin, C. S. J.; Nolan, S. P. Acc. Chem. Res. 2012, 45, 778; k) Yang L.; Huang, H. Catal. Sci. Technol. 2012, 2, 1099; l) Arockiam, P. B.; Bruneau, .C; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879; m) Rouquet, G.; Chatani, N. Angew, Chem., Int. Ed. 2013, 52, 11726; n) Mousseau, J. J.; Charrette, A. B. Acc. Chem. Res. 2013, 46, 412; o) Shang, X.; Liu, Z.-Q. Chem. Soc. Rev. 2013, 42, 3253; p) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev. 2016, 45, 2900.
5. Hashmi, A. S. K. Angew. Chem. Int. Ed. 2000, 39, 3590.
6. a) Zeng, R.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2012, 134, 9597; b) Zeng, R.; Wu, S.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2013,135, 18284.
7. a) Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318; Angew. Chem. 2012, 124, 7430; b) Wang, H.; Beiring B.; Yu, D.-G.; Collins, K. D.; Glorius, F. Angew. Chem. Int.Ed. 2013, 52, 12430; Angew. Chem. 2013, 125, 12657.
8. a) Santhoshkumar, R.; Mannathan, S. Cheng, C.-H.; Org. Lett. 2014, 16, 4208; b) Santhoshkumar, R.; Mannathan, S. C.-H. Cheng, J. Am. Chem. Soc. 2015, 137, 16116; c) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Angew. Chem., Int. Ed. 2016, 55, 4308; d) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774. m) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2016, 55, 1844. o) Kuppusamy, R.; Muralirajan, K.; Cheng, C.-H. ACS Catal. 2016, 6, 3909.
9. a) Chen, Q.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133,428; b) Ilies, L.; Chen, Q.; Zeng, X.; Nakamura, E. J. Am.Chem. Soc. 2011, 133, 5221.
10. a) Gao, K.; Yoshikai, N. Acc. Chem. Res. 2014, 47, 1208; b) Gao, K. Yamakawa, T.; Yoshikai, N.; Synthesis 2014, 46, 2024; c) Yoshikai, N. ChemCatChem 2015, 7, 732; d) Wu, J.; Yoshikai, N. Angew. Chem. Int. Ed. 2016, 55, 336; Angew. Chem. 2016, 128, 344.
11. a) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688; b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2015, 17, 1204; c) Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. ACS Catal. 2016, 6, 551.
12. a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2013, 52, 2207; Angew. Chem. 2013, 125, 2267; b) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Chem. Eur. J. 2013, 19, 9142 c) Ikemoto, H.; Yoshino, T.; Sakata K.; Matsunaga S.; Kanai M. J. Am. Chem. Soc. 2014, 136, 5424.
13.a) Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem. Eur. J. 2015, 21, 15525; b) Li J.; Ackermann, L. Angew. Chem.Int. Ed. 2015, 54, 8551; Angew. Chem. 2015, 127, 8671; c) Mei, R.; Wang, H.; Warratz, S.; Macgregor, S. A.; Ackermann, L. Chemistry 2016, 1–6; d) Moselage, M.; Li, J.; Ackermann, L. ACS Catal. 2016, 6, 498.
14.a) Kalsi, D.; B. Sundararaju, B. Org. Lett. 2015, 17, 6118; b) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490; c) Sen, M.; Emayavaramban, B.; Barsu, N.; Premkumar, J. R. Sundararaju, B. ACS Catal. 2016, 6, 2792.
15. a) Rouquet, G.; Chatani, N. Chem. Sci., 2013, 4, 2201; b) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755; c) Allu, S.; KumaraSwamy, K. J. Org. Chem. 2014, 79, 3963; d) Grigorjeva, L.; Dauguli, O. Angew. Chem. Int. Ed. 2014, 53, 10209; e) Lin, C.; Li D.; Wang B.; Yao, J.; Zhang, Y. Org. Lett. 2015, 17, 1328.
16. Wei, D.; Zhu, X.; Niu, J.-L.; Song, M.-P. Angew.Chem. Int.Ed. 2016, 55, 13571.
17. Kuninobu, Y.; Yu, P.; Takai, K. Org. Lett. 2010, 19, 4274.
18. Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318.
19. Nakanowatari, S.; Ackermann, L. Chem.—Eur. J. 2015, 21, 16246.
20. Mascarenas, J. L. & Gulias, M. Angew. Chem. Int. Ed. 2015, 54, 1.
21. a) Kuppusamy, R.; Muralirajan, K.; Cheng, C.-H. ACS Catal. 2016, 6, 3909; Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem.—Eur. J. 2015, 21, 9198; Kuppusamy, P.; Gandeepan, P.; Cheng, C.-H. Org. Lett. 2015, 17, 3846
22 a) Maiti, D. and Volla, M. R. Angew.Chem. Int.Ed. 2016, 55, 12361; b) Li, T.; Zhang, C.; Tan, Y.; Pan, W.; Rao, Y. Org. Chem. Front., 2017, 4, 204.
23. a) Yang, K.; Chen, X.; Wang, Y.; Li, W.; Kadi, A. A. .; Fun, H.-K.; Sun H.; Zhang, Y.; Li, G.; Lu H. J. Org. Chem. 2015, 80, 11065; b) Wu, X.; Yang K.; Zhao Y.; Sun H.; Li, G.; Ge, H. Nat. Commun. 2015, 6, 6462; c) Zhang, J.; Chen, H.; Lin, C.; Liu, Z.; Wang, C.; Zhang, Y. J. Am. Chem. Soc. 2015, 137, 12990.
24. Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: New York, 1988.
25. a) Grigorjeva, L.; Daugulis, O. Angew. Chem. Int. Ed. 2014, 53, 10209; b) Wang, S.; Guo, R.; Wang, G.; Chen, S.-Y.; Yu, X.-Q. Chem. Commun. 2014, 50, 12718; c) Gandeepan, P.; Rajamalli, .P; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 4311.
26. a) Trost, B. M.; Pinkerton, A. B.; Seidel, M. J. Am. Chem. Soc. 2001, 123, 12466; b) Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Eur. J. 2013, 19, 712; c) Ngai, M. Y.; Skucas, E.; Krische, M. J. Org. Lett. 2008, 10, 2705;.d) Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763; e) Ni, S.; Zhu, C.; Chen, J. Ma, S. Org. Synth. 2013, 90, 327; f) Shea, K. J.; Kim, J. S. J. Am. Chem. Soc. 1992, 114, 3044.
Chapter-3
1. a). Cathcart, C. No Title. Chem. Ind. 1990, 5, 684.(b) Anastas, P. T. Chem. Rev. 2007, 107, 2167. c) Trost, B. M. Science. 1991, 254, 1471. d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
2. a) Timothy L. Stuk, Bryce K. Assink, Ronald C. Bates, J. D. T. E.; Victor Fedij, Sandra M. Jennings, Jennifer A. Lassig, Randy J. Smith, and Smith, T. L. Org. Proc. Res. Dev. 2003, 7, 851. b) Hardcastle, I. R.; Liu, J.; Valeur, E.; Watson, A.; Ahmed, S. U.; Blackburn, T. J.; Bennaceur, K.; Clegg, W.; Drummond, C.; Endicott, J. A. J. Med. Chem. 2011, 54, 1233. c) Augner, D.; Krut, O.; Slavov, N.; Gerbino, D. C.; Sahl, H.-G.; Benting, J.; Nising, C. F.; Hillebrand, S.; Krönke, M.; Schmalz, H.-G. J. Nat. Prod. 2013, 76, 1519.
3.a) Floch, L.; Nydegger, F.; Gossauer, A.; Kratky, C. Helv. Chim. Acta 1994, 77, 445. b) Ito, M.; Okui, H.; Nakagawa, H.; Mio, S.; Iwasaki, T.; Iwabuchi, J. Heterocycles 2002, 57, 881. c) Shionozaki, N.; Yamaguchi, T.; Kitano, H.; Tomizawa, M.; Makino, K.; Uchiro, H. Tetrahedron Lett. 2012, 53, 5167.
4. a) Grigorjeva, L.; Daugulis, O. Angew. Chem. Int. Ed. 2014, 53, 10209. b) Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu, J.-L.; Song, M.-P. Angew.Chem. Int. Ed. 2015, 54,10012. c) Kalsi, D.; Sundararaju, B. Org. Lett. 2015, 17, 6118. d) Yamakawa, T.; Yoshikai, N. Org. Lett. 2013, 15, 196. e) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684. f) Suzuki, Y.; Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Tetrahedron. 2015, 71, 4552. g) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822. h) Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. ACS Catal. 2016, 6, 551. i) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Angew.Chem. Int.Ed. 2016, 55, 4308. j) Thrimurtulu, N.; Dey, A.; Maiti, D.; Volla, C. M. R. Angew. Chem., Int. Ed. 2016, 55, 12361 k) Li, T.; Zhang, C.; Tan, Y.; Pan, W.; Rao, Y. Org. Chem. Front. 2017, 4, 204. l) Kuppusamy, R.; Santhoshkumar, R.; Boobalan, R.; Wu, H.-R.; Cheng, C.-H. Synthesis of 1,2-Dihydroquinolines ACS Catal. 2018, 8, 1880.
5. a) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424. b) Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968. c) Wang, H.; Koeller, J.; Liu, W.; Ackermann, L. Chem. Eur. J. 2015, 21, 15525. d) Sen, M.; Kalsi, D.; Sundararaju, B. Chem. Eur. J. 2015, 21, 15529. e) Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844. f) Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774. g) Lerchen, A.; Vasquez-Cespedes, S.; Glorius, F. Angew. Chem. Int. Ed. 2016, 55, 3208. h) Zhang, Z.-Z.; Liu, B.; Xu, J.-W.; Yan, S.-Y.; Shi. B.-F. Org. Lett. 2016, 18, 1776.
6. Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2013, 52, 2207.
7. Yu, D.G.; Gensch, T.; Azambuja, F. Céspedes, S.V.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722.
8. a). Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2015, 54, 9944. b) Li, J.; Ackermann, L. Angew. Chem., Int. Ed. 2015, 54, 8551. c) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17, 2400.
9. Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844.
10. Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 774.
11 Kong, L.; Zhou, X.; Li, X. Org.Lett. 2016, 18, 6320.
12. a) Muralirajan, K.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2017, 359, 513. b) Kond, L.; Yu, S.; Tang, G.; Wang, H.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 3802.
13..Barsu, N.; Sen, M.; Premkumar, J. R.; Sundararaju, B. Chem. Comm. 2016, 52, 1338.
14. Sivakumar, G.; Vijeta, A.; Jeganmohan, M. Chem. Eur. J. 2016, 22, 5899.
15. Shi, P.; Wang, L.; Chen, K.; Wang, J.; Zhu, J. Org. Lett. 2017, 19, 2418.
16. Chen, X.; Hu, X.; Deng, Y.; Jiang, H.; Zeng, W. Org. Lett. 2016, 18, 4742.
17. Yu, X.; Chen, K.; Yang, F.; Zha, S.; Zhu, J. Org. Lett. 2016, 18, 5412.
18. Wang, H.; Lorion, M. M.; Ackermann, L. ACS Catal. 2017, 7, 3430.
19. Wang, H.; Lorion, M. M.; Ackermann, L. Angew. Chem. Int. 2016, 55, 10386.
20. Kim, J. H.; Grebies, S.; Glorius, F. Angew. Chem. Int. 2016, 55, 5577.
21. Hyster, T. K.; T. Rovis, T. K. J. Am. Chem. Soc., 2010, 132, 10565
22. Ilies, L.; Chen, Q.; Zeng, X.; Nakamura, E. J. Am. Chem. Soc. 2011,133, 428.
23. Yu, D.; Hyster, T. K.; T. Rovis, T. K. Chem. Commun., 2011, 47, 12074.
24. Ilies, L.; Chen, Q.; Zeng X.; Nakamura, E. Asian J. Org. Chem. 2012, 1, 142.
25. Ravi Kiran, C. G.; Jeganmohan, M.; Org.Lett. 2012, 14, 20.
26. Li, J.; and Ackermann, L.; Chem. Eur. J. 2015, 21, 5718.
27. Tang, Q.; Xia, D.; Jin, X.; Zhang, Q.; Sun, C.-L.; Wang, C.; J. Am. Chem. Soc. 2013, 135, 4628.
28. Padala, K.; Jeganmohan, M.; Chem. Eur. J. 2014, 20, 4092.
29. Nitinkumar, S. U.; Vijaykumar, H. T.; Ryota, S.; Pratheepkumar, A.; Chuang, S.-C.; Cheng, C.-H. Green Chem., 2017, 19, 3219
30. Muniraj, N.; Prabhu, K. R. Adv. Synth. Catal. 2018, 360, 1370.
31. Gensch, T.; Vasquez-Cespedes, S.; Yu, D.-G.; Glorius, F. Org. Lett. 2015, 17, 3714.
32. Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2010, 49, 8181.
33. Yamauchi, M.; Morimoto, M.; Miura T.; Murakami, M. J. Am. Chem. Soc. 2010, 132, 1.
34. Chen, S.- Y.; Li, Q.; Wang, H. J. Org. Chem. 2017, 82, 11173.
35. Wu, L.; Meng, Y.; Ferguson, J.; Wang, L.; Zeng, F. J. Org. Chem. 2017, 82, 4121.
36. Cendón, B.; Casanova, N.; Comanescu, C.; García-Fandiño, R.; Seoane, A.; Gulías, M.; Mascareñas, J. L.; Org. Lett. 2017, 189, 1674.
37. Thrimurtulu, N.; Nallagonda, R.; Volla, C. M. R.; Chem. Commun. 2017, 53, 1872–1875.
38. Nakanowatari, S.; Mei, R.; Feldt, M.; Ackermann, L. ACS Catal. 2017, 7, 2511.
39. Zhou, Z.; Liu, G.; Lu, X. Org. Lett. 2016, 18, 5668.
40. Kuppusamy, R.; Santhoshkumar, R.; Boobalan, R.; Wu, H.-R.; Cheng, C.-H. ACS Catal. 2018, 8, 1880
41. a) Pierson, J. M.; Ingalls, E. L.; Vo, R. D.; Michael, F. E Angew. Chem., Int. Ed. 2013, 52, 13311. b) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822. c) Casanova, N.; Seoane, A.; Mascareñas, J. L.; Gulías, M. Angew. Chem., Int. Ed. 2015, 54, 2374.
42. Perrin, D. D.; Armarego, W. L. F. In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, 1988.
43. Ackermann, L.; Lygin, A. V.; N. Hofmann, N. Angew. Chem., Int. Ed., 2011, 50, 6379.
44. Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou,, K. J. Am. Chem. Soc., 2008, 130, 16474.
45. Ni, S.; Zhu, C.; Chen, J.; Ma, S. Org. Synth. 2013, 90.