簡易檢索 / 詳目顯示

研究生: 林君純
Chun-Chun Lin
論文名稱: 以過濾式陰極真空電弧電漿系統合成碳化鉻薄膜製程與特性之研究
Processing and properties of chromium carbide thin films synthesized by a filtered cathodic vacuum arc plasma system
指導教授: 施漢章
Han C. Shih
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 147
中文關鍵詞: filtered cathodic vacuum arc plasma systemchromium carbide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是使用過濾式陰極電弧電漿沉積法在鋼材上合成碳化鉻薄膜,藉由控制製程參數,如沉積溫度、基板偏壓及反應氣體流量 (C2H2/Ar)沉積出結晶與非晶質之碳化鉻薄膜,並探討其微結構變化、機械性質、腐蝕行為及光學性質。
    研究結果顯示,使用過濾式陰極電弧電漿系統在沉積溫度500℃下能成功合成出均勻且緻密的碳化鉻薄膜,且在此溫度下,施加不同基材偏壓(-50—-550V)能有效使碳化鉻薄膜由非晶質相轉變成結晶相(cryst-CrC),為Cr3C2且含有似纖維結構之Cr23C6相。結晶化碳化鉻薄膜相較於非晶質化碳化鉻薄膜具有較佳之機械強度及附著性,也因本身結構緊密且無微粒(micro-particles)存在,故在氯鹽環境下具有極佳抗腐蝕能力。
    針對披覆結晶(cryst-Cr3C2)與非晶質(a-CrC)之碳化鉻的鋼材之腐蝕行為做更進一步探討,使用等效電路模擬EIS量測之結果互相比較,以了解cryst-Cr3C2/steel 與a-CrC/steel腐蝕機制的影響。 結果顯示cryst-Cr3C2/steel的腐蝕阻抗較a-CrC/steel佳。
    本論文的另一重點是利用陰極發光技術分析非晶質碳膜摻雜鉻原子與碳化鉻薄膜的光學性質,結果指出兩者之光學性質相似,發出2.10、2.03和1.99 eV的光譜,主要是由π鍵基態至π鍵激發態能階的跳躍、外來元素的摻雜與缺陷能階所造成。


    In this thesis, the 90o-bend filtered cathodic vacuum arc (FCVA) technology was employed to deposit the chromium carbide films on the steel (AISI D2). This investigation was to compare various conditions which including the deposition temperature, the substrate bias voltage and the C2H2/Ar flow. The micro-structures, mechanical properties, corrosion behavior and optical properties of the chromium carbide film are thoroughly discussed.
    The uniform and dense of the chromium carbide films have been successfully synthesized using our FCVA system. The chromium carbide is transformed from amorphous to crystallized phase, as the negative substrate bias voltage increases from -50 to -550 V at 500 ℃.Moreover, the crystallized Cr23C6 phase appears as the negative substrate bias voltage further increases. A compact and dense Cr3C2 film with the fibrous structure of Cr23C6 was successfully prepared.
    The Cr3C2 coated steel has a relatively high nanohardness and excellent adhesion compare with the amorphous chromium carbide. The corrosion resistance of the Cr3C2 coated steel is owing to the establishment of a defects-free microstructure. No pitting corrosion was observed on the Cr3C2 coated steel.
    The corrosion behaviors of cryst-Cr3C2/steel and a-CrC/steel were investigated further. All samples was measured and the results obtained from electrochemical impedance spectroscopy (EIS) simulated by the equivalent circuit to interpret the corrosion mechanism of the cryst-Cr3C2/steel and a-CrC/steel were compared. The results indicated that the cryst-Cr3C2/steel more effectively isolates the defects than dose a-C:Cr/steel in saline environment.
    The cathodoluminescence spectra of the DLC:Cr films are evident in the visible region, thereby shifting the red emission to 1.99 eV. The orange emission at 2.03 eV also appears due to transitions between chromium-related electron levels and σ* states. Additionally, the peak at 2.10 eV likely results from the defective structures in the DLC:Cr films. The effect of Cr doping changed DLC band structure and its consequent cathodoluminescence property.

    Contents Abstract (in Chinese) ..……………...………………………………….....I Abstract (in English)…………………………………….………………III Acknowledgements (in Chinese) ……………………….……………….V Contents …………………………………………………………...…...VII Table lists………………………………………………………………..XI Figure captions …………………………………………………………XII Chapter 1 Introduction……………………………………….…...…....…1 1.1 Background and Motivation…………………….……..……..… 1 1.2 Overview……………………………………..….….…….……. 4 Chapter 2 Theoretical basis ….……………….……………………....…...….…. 7 2.1 Cathodic arc plasma……………………………………....….….7 2.1.1 Principle………………………….……….………….………..8 2.1.2 Vacuum Arc………………………..…….……………...........10 2.1.3 Arc Sources ……………………………….……..……...........10 2.1.4 Additional magnet behind targets……………………............ 11 2.1.5 Macro-particles…………………………………...….……… 11 2.1.6 Macro-particle filter…………………..………….…..………13 2.2 Properties and characterization………………………………....15 2.2.1 Nanoindentation method……………………………………...15 2.2.2 Scratch tests…………………………………………………..16 2.2.3 Corrosion resistance evaluation………………………………19 2.2.3.1 Linear polarization…………………….………….………...19 2.2.3.2 Electrochemical impedance spectroscopy (EIS)…………... 20 2.3 Chromium carbides……………………………………………..35 2.3.1 Background…………………………………………………... 35 2.3.2 The chromium-carbon system……………………………….. 36 2.3.3 Production of chromium carbides…………………………….37 2.3.4 Applications…………………………………………………..38 2.3.4.1 Wear resistant coatings……………………………………..38 2.3.4.2 Welding electrodes………………………………………… 38 2.3.4.3 Thermal spray applications…………………………………40 2.3.4.4 Chrome plating alternative………………………………… 40 2.3.4.5 Cutting tools…………………………………………...........41 Chapter 3 Instrumentation and experimental procedure.………………..43 3.1 Instrumentation—filtered cathodic vacuum arc system (FCVA)………………………………………………………..43 3.2 Overview of the experiment procedures…..…………...……....45 3.2.1 Materials selection…………………………………………...45 3.2.2 Filtered cathidic vacuum arc deposition process…………….45 3.3 Characterization…………………………….……….….……...48 3.3.1 Microstructure analysis………………………………………48 3.3.2 Phase identification…………………………………………..48 3.3.3 Composition analysis………………………………………...48 3.3.4 Nanomechanical properties…………………………………..50 3.3.5 Cathodoluminescence (CL)…………………………………. 51 3.3.6 Corrosion tests………………………………………………. 51 Chapter 4 Results and discussion………………………………………. 54 4.1 Formation and characterization of chromium carbide films…... 54 4.1.1 Effect of deposition temperature……………………………..55 4.1.2 Effect of substrate bias voltage………………………………63 4.2 The effect of the substrate bias voltage on the mechanical and corrosion properties of chromium carbide thin films………………69 4.2.1 Crystallographic orientation and surface morphology ……...70 4.2.2 Mechanical properties………………………………………...75 4.2.3 Corrosion characteristics……………………………………...........82 4.3 Corrosive behavior of chromium carbide based films formed on steel…………………………………………………………………86 4.3.1 Crystallographic orientation…………………………………. 87 4.3.2 Open-circuit potential (OCP)……………………………........90 4.3.3 EIS behavior………………………………………………….93 4.4 Cathodoluminescence of Cr doped DLC film………………...106 4.4.1 Raman analysis……………………………………………...107 4.4.2 XPS and TEM analysis……………………………………...111 4.4.3 Cathodoluminescence spectra……………………………….117 Chapter 5 Conclusion…………………………………....…………….120 References…………………………………………………...…….......123 Publications………………………………………………...…….……143 Table lists Table 2.1. Standard grades of chromium carbide………………………37 Table 3.1. Deposition parameters of chromium carbide films using 90o–bend magnetic filtered cathodic vacuum arc……………46 Table 4.1. Mechanical properties of Cr3C2 coating as a function of the substrate bias voltages……………………….……………..76 Table 4.2. Corrosion potential Ecorr and corrosion current density icorr for Cr3C2 on AISI D2 steel with varying substrate bias voltages and uncoated steel evaluated in aerated 3.5% NaCl aqueous solutions…………………….................................................83 Table 4.3 Optimum fit parameters of the a-C:Cr/steel and cryst-Cr3C2/steel derived from the equivalent circuit……...............103 Table 4.4. Values of T peak, D band and G band’s position, FWHM, the ratio (ID/IG), and Cr/C atomic ratio for various C2H2/Ar flow………………………………………………………..114 Figure captions Fig. 2.1 The scheme of the radicals excited by the vacuum arc…………9 Fig. 2.2 Different types of filters (a) 90□-bend filter and (b) S-bend filter…………………………………………………………..15 Fig. 2.3 Schematic representation of failure modes in the scratch test in profile and plan view: (a) spalling failure, (b) buckling failure, (c) chipping failure, (d) conformal cracking and (e) tensile cracking………………………………………………………..18 Fig. 2.4 Cyclic nature of AC voltage……………………………………22 Fig. 2.5 Electrical behavior of an electric double layer…………………22 Fig 2.6 AC voltage-current phase angle………………………………...24 Fig. 2.7 Vector nature of voltage and current…………………………...24 Fig. 2.8 Electrical double layer for an uncoated, oxide-free corroding metal……………………………………………………...…..27 Fig 2.9 Electrified interface structure for a corroding, coated metal…....29 Fig. 2.10 Single time constant complex plane plot……………...…..…..32 Fig. 2.11 Single time constant Bode magnitude plot……………………32 Fig. 2.12 Part of the phase diagram for chromium and carbon…………36 Fig. 3.1 Setup of the 90o–bend magnetic FCVA system………………...44 Fig. 3.2 The FCAP system in our laboratory……………………………44 Fig. 3.3 The experiment procedures…………………………………….47 Figure 4.1 Cross-section SEM images of the amorphous chromium carbide film deposited at the substrate bias of -150V at (a) ambient temperature, (b) 300 ℃, and (c) 500 ℃……….. 56 Figure 4.2 AES depth profile of chromium carbide film deposited at two different deposition temperature: (a)T=300 ℃, (b) T=500 ℃ on the Si wafer. The thickness of the film is 500 nm……………………………………………………….…..61 Figure. 4.3 XPS C 1S(a) and Cr 2p(b) spectra of the chromium carbide deposited at ambient temperature, 300 ℃ and 500 ℃…….62 Figure 4.4 X-ray diffraction patterns of the Cr3C2 deposited at 500℃ with varying substrate bias voltages………………………..64 Figure 4.5 (a) Cross-section TEM micrograph and (b) SAD pattern of the crystallized chromium carbide/Cr deposited on the Si wafer.......................................................................................67 Figure 4.6 Cross-section TEM micrograph and SAD pattern from an area that covers the top of the chromium carbide film deposited at (a)-250, and (b) -550 V………………………………..…….68 Figure 4.7 Cross-section SEM images of Cr3C2 films deposited at (a)-50V and (b) -550V substrate bias voltage………………………..73 Figure 4.8 Surface morphologies of Cr3C2 films deposited at (a)-50V and (b) -550V substrate bias voltage……………………..……...74 Figure 4.9 The nanoindentation Load-displacement curves of Cr3C2 film formed at various substrate bias voltages……….…….…….76 Figure 4.10 Friction coefficients of Cr3C2 coated steel against a diamond tip as function of scratch time with various substrate bias voltages…………………………………………………....78 Figure 4.11 Surface morphologies of (a)initial conformal cracking, (b)initial buckling failure and (c)near the end of the scratch track as indicated with white arrows on the scratch track………………………………….………………..…...81 Figure 4.12 Potentiodynamic polarization curves of uncoated steel and Cr3C2 coated steel with various substrate bias voltages, in aerated 3.5% NaCl aqueous solutions……………………..84 Figure 4.13 Ecorr and icorr for Cr3C2 coated AISI D2 steel with varying substrate bias voltages evaluated in aerated 3.5% NaCl aqueous solutions………………………...………………...85 Figure 4.14 XRD patterns of chromium carbide based films with various C2H2/Ar pressures deposited at 500℃ under the substrate bias voltage of -50 V………………………………...…….89 Figure 4.15 Variation of the OCPs with the immersion time of the steel and the coating assemblies in an aerated 3.5 wt% NaCl solution…………………………………………………….92 Figure 4.16. Nyquist plots as a function of immersion time in an aerated 3.5 wt% NaCl solution: (a) steel (AISI D2), (b) a-C:Cr/steel and (c) cryst-Cr3C2/steel……………………………..…….96 Figure 4.17 The SEM images after the 216 h immersion test:(a) a-C:Cr/steel and (b)cryst-Cr3C2/steel…………………………………...98 Figure 4.18 Interface impedance model of the a-C:Cr/steel and the Cr3C2/steel (a) cross-section schematic, and (b) its equivalent circuit………………………………………..104 Figure 4.19 Comparison of the simulated and measured EIS data as a function of immersion time in aerated 3.5 wt% NaCl solution of (a) a-C:Cr/steel and (b) cryst-Cr3C2/steel……………..……………………….…105 Figure 4.20 Raman spectroscopy of the DLC:Cr film deposited at various C2H2 /Ar flows: (a) 5/5, (b) 10/10, (c) 10/30, and (d) 20/20 sccm………………………………………………………110 Figure 4.21 XPS spectra of the C1s core level for DLC:Cr film deposited at various C2H2 /Ar flows: (a) 5/5, (b) 10/10, (c) 10/30, and (d) 20/20 sccm…………………………………………...…….115 Figure 4.22 XPS spectra of the Cr2p core level for DLC:Cr film deposited at various C2H2 /Ar flows: (a) 5/5, (b) 10/10, (c) 10/30, and (d) 20/20 sccm………………...…………….115 Figure 4.23 TEM cross-sectional micrograph and its corresponding SAD pattern of the DLC:Cr film formed at the C2H2 /Ar flow of 20/20 sccm……………………………….………………116 Figure 4.24 CL spectra of the DLC:Cr films synthesized at various C2H2/Ar flows: (a) 5/5, (b) 10/10, (c) 10/30, and (d) 20/20 sccm………………………………………………

    References
    1. R. L. Boxman, D. M. Sanders, P. J. Martin, Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications, Noyes, Park Ridge, NJ, 1995.
    2. M. M. M. Bilek, W. I. Milne, “Electronic properties and impurity levels in filtered cathodic vacuum arc (FCVA) amorphous silicon”, Thin Solid Films 308-309 (1997) 79.
    3. M. Hakovirta, K. C. Walter, B. P. Wood, M. Nastasi, “Graphite macroparticle filtering efficiency of three different magnetic filter designs used in the filtered cathodic vacuum arc deposition of tetrahedral amorphous carbon films” J. Vac. Sci. Technol. A 17(5) (1999) 3077.
    4. K. Hohnberg, A. Matthews, Coatings Tribology, Tribology Series, 28. Elsevier, Amsterdam/London/New York/Tokyo, 1994.
    5. H. Holleck, “Material selection for hard coatings”, J. Vat., Sci. Technol., A 4(6) (1986) 2661.
    6. A. Kagawa, Y. Ohta, “Wear resistance of laser clad chromium carbide surface layers”, Mater. Sci. Technol. 11 (1995) 515.
    7. H. O. Pierson, Handbook of Refractory Carbides and Nitrides, (1996) 101.
    8. D. Y. Wang, K. W. Weng, C. L. Chang, W. Y. Ho, “Oxidation behavior of diamond-like carbon films”, Surf. Coat. Technol. 120-121 (1999), 622.
    9. H. Kleykamp, “Thermodynamic studies on chromium carbides by the electromotive force (emf) method”, J. Alloys Comp., 321 (2001) 138.
    10. S. Loubiére, C. Laurent, J. P. Bonino, A. Rousset, “Elaboration, microstructure and reactivity of Cr3C2 powders of different morphology”, Mater. Res. Bull., 30 (1995) 1535.
    11. N. Maréchal, E. Quesnel, Y. Pauleau, “Deposition process and characterization of chromium-carbon coatings produced by direct sputtering of a magnetron chromium carbide target”, J. Mater. Res., 9 (1994) 1820.
    12. T. Arai, S. Moriyama, “Growth behavior of chromium carbide and niobium carbide layers on steel substrate, obtained by salt bath immersion coating process”, Thin Solid Films 259 (1995), 174.
    13. M. Detroye, F. Reniers, C. Buess-Herman, J. Vereecken, “Synthesis and characterization of chromium carbides”, Appl. Surf. Sci. 120 (1997), 85.
    14. C. A. Paul, J. Lim, K. Choi, C. Lee, “Effects of deposition parameters on the properties of chromium carbide coatings deposited onto steel by sputtering”, Mater. Sci. Eng. A332 (2002) 123.
    15. J. Esteve, J. Romero, M. Gómez, A. Lousa, “Cathodic chromium carbide coatings for molding die applications”, Surf. Coat. Technol. 188-189 (2004), 506.
    16. Y. Y. Chang, D. Y. Wang, “Structural and electrical properties of Cr doped a-C:H films synthesized by a cathodic-arc activated deposition process”, Surf. Coat. Technol. 200 (2006) 3170.
    17. M. C. Chiu, W. P. Hsieh, W. Y. Ho, D. Y. Wang, F. S. Shieu, “Thermal stability of Cr-doped diamond-like carbon films synthesized by cathodic arc evaporation”, Thin Solid Films 476 (2005) 258.
    18. D. Y. Wang, K. W. Wang, S. Y. Huang, “Study on metal-doped diamond-like carbon films synthesized by cathodic arc evaporation”, Diamond Relat. Mater. 9 (2000) 1762.
    19. Y. Y. Chang, D. Y. Wang, W. T. Wu, “Characterization of nitrogen-doped a-C:H films deposited by cathodic-arc activated deposition process”, Diamond Relat. Mater. 12/10–11 (2003) 2077.
    20. H. Dimigen, H. Hubsch, “Applying low-friction wear-resistant thin solid films by physical vapor deposition” Philips Tech. Rev., 41 [6] (1983/84) 186.
    21. H. Dimigen, H. Hubsch, “Tribological and electrical properties of metal-containing hydrogenated carbon films”, Appl. Phys. Lett., 50 [16] (1987) 1056.
    22. H. Dimigen, C.P. Klages, “Microstructure and wear behavior of metal-containing diamond-like coatings”, Surf. Coat. Tech., 49 [1-3] (1991) 543.
    23. D. G. Teer, “Technical Note: a Magnetron Sputter Ion-Plating System”, Surf. Caot. Tech., 39/40 (1989) 565.
    24. D. P. Monaghan, D. G. Teer, “Ion-assisted CVD of graded diamond like carbon (DLC) based coatings”, Journal De Physique, 3 [3] (1993) 579.
    25. D. P. Monaghan, D. G. Teer, P.A. Logan, I. Efeoglu, R.D. Arnell, “Deposition of wear resistant coatings based on diamond like carbon by unbalanced magnetron sputtering”, Surf. Caot. Tech., 60 (1993) 525.
    26. D. P. Monaghan, K. C. Liang,“ How to deposit DLC successfully”, Mater. World (1993) 347.
    27. C. Benndorf, J. T. Harnack, “Deposition of Me-C:H coatings from metal organic precursors using a plasma-activated r.f. process”, Surf. Coat. Tech., 59 (1993) 345.
    28. M. Grischke, F. Thieme, Fres. Zeit. Analy. Chem., 333 [4-5] (1989) 299.
    29. E. Bergmann, J. Vogel, “Tribological properties of metal/carbon coatings”, J. Vac. Sci. Technol. (A), 4[6] (1986) 2867.
    30. J. T. Harnack, F. Thieme, “Target Effects During the Deposition of Ti--a-C:H Films”,Surf. Coat. Tech., 39 (1989) 285.
    31. M. Wang, K. Schmidt, „The properties of titanium-containing amorphous hydrogenated carbon films”, Surf. Coat. Tech., 47 (1991) 691.
    32. A. A.Voevodin, R. Bantle, A. Matthews, “Dynamic impact wear of TiCxNy and Ti-DLC composite coatings”, Wear 185 (1995), 151.
    33. K. Taube, “Carbon-based coatings for dry sheet-metal working”, Surf. Coat. Tech., 98 [1-3] (1998) 976.
    34. T. Michler, M. Grischke, “Properties of duplex coatings prepared by plasma nitriding and PVD Ti–C:H deposition on X20Cr13 ferritic stainless steel”, Thin Solid Films, 322 [1-2] (1998) 206.
    35. C. Benndorf, E. Boettger, “Electrical conductivity and microstructure of metal containing a-C:H films”, Synthetic Metals, 41-43 (1991) 4055.
    36. C. Benndorf, M. Fryda, “Structural and Mechanical Properties of Niobium-Containing Amorphous Hydrogenated Carbon Films (Nb--C:H)”,Mater. Sci. Eng. A, A140 (1991) 795.
    37. D. Hofmann, H. Schuessler, “Plasma-booster-assisted hydrogenated W-C coatings”, Surf. Coat. Tech., 73 [3] (1995) 137.
    38. H. C. Lee, D. S. Gan, thesis of mechanical properties and microstructure of chromium-containing diamond-like carbon coatings, NSYU (2001).
    39. A. Anders, Cathodic Arc Plasma Deposition, Lawrence Berkeley National Laboratory, University of California.
    40. R. L. Boxman, S. Goldsmith, “Macroparticle contamination in cathodic arc coatings: generation, transport and control”, Surf. Coat. Technol. 52(1992) 39.
    41. Z. Q. Ma, Y. Kido, “The atomic displacements on surface generated by low-energy projectile”, Thin Solid Films 359(2000)288.R.L. Boxman, P.J. Martin, D. Sanders (Eds.). “Handbook of Vacuum Arc Science and Technology”, Noyes, New York 1996.
    43. P. Siemroth, T. Schülke, T. Witke, “High-Current arc–a new source for high–rate deposition”, Surf. Coat. Technol. 68(1994) 314.
    44. T. Schuelke, T. Writke, H.J. Scheibe, P. Siemroth, B. Schultrich, O. Zimmer, “Comparison of DC and AC arc films deposition techniques”, J. Vetter. Surf. Coat. Technol. 120(1999) 226.
    45. E. Erturk, H.J. Heuvel, H.G. Dedrich, “CRN and (Ti, Al) N coatings deposited by the steered arc and random arc techniques”, Surf. Coat. Technol. 39(1989) 455.
    46. H. D. Steffens, M. Mack, K. Moehwald, K. Reichel, “Reduction of droplet emission in random arc technology”, Surf. Coat. Technol. 46(1991) 65.
    47. B. Jüttner, “Erosion craters and arc cathode spots”, Beitr. Plasmaphys., 19 (1979) 25.
    48. W. D. Davis, H. C. Miller, “Analysis of the electrode products emitted by dc arcs in a vacuum ambient”, J. Appl. Phys. 40 (1969) 2212.
    49. J. E. Daalder, “Components of cathode erosion in vacuum arcs”, J. Phys. D: Appl. Phys. 9 (1976) 2379.
    50. S. Anders, A. Anders, K.M. Yu, X.Y. Yao, I.G. Brown, “On the macroparticle flux from vacuum arc cathode spots”, IEEE Trans. Plasma Sci. 21 (1993) 440.
    51. O. Monteiro, A. Anders, “Vacuum-arc-generated macroparticles in the nanometer range”, IEEE Trans. Plasma Sci., 27 (1999) 1030.
    52. S. Falabella, D. A. Karpov, “Continuous cathodic arc sources”, in Handbook of Vacuum Science and Technology, R.L. Boxman, P. J. Martin, D.M. Sanders, Eds. Park Ridge: Noyes, (1995) 397.
    53. S. Ramalingam, C.B. Qi, K. Kim, “Controlled vacuum arc material deposition, method and apparatus”, US 4,673,477, 1987.
    54. B. Jüttner, “On the variety of cathode craters of vacuum arcs, and the influence of the cathode temperature” Physica, 114C (1982) 155.
    55. K. Miernik, J. Walkowicz, “Spatial distribution of microdroplets generated in the cathode spots of vacuum arcs”, Surf. Coat. Technol. 125(2000) 161.
    56. J. S. Yoon, J. G. Han, “The ion current density and spectroscopic study in a straight magnetic filtering arc deposition system”, Surf Coat. Technol. 94(1997) 201.
    57. A. Anders, R.A. Macgill, “Twist filter for the removal of macroparticles from cathodic arc plasmas”, Surf. Coat. Technol. 133-134(2000) 96.
    58. S. Anders, A. Anders, M.R. Dickenson, R. Macgill, I.G. Brown, “S-shaped magnetic macroparticle filter for cathodic arc deposition”, IEEE. Trans. Plasma Sci 25(1997) 670.
    59. W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, J. Mater. Res. 7 (1992) 1564-1583.
    60. M. F. Doener, W. D. Nix, “A method for interpreting the data from depth-sensing indentation instruments”, J. Mater. Res. 1 (1986) 601.
    61. O. S. Heaven, J. Phys., Radium, 11 (1950) 355.
    62. M. Cailler, G.H. Lee, “Scratcch adhesion test of magnetron-sputtered copper coating on aluminum substrate: effect of the surface preparation”, Thin Solid Films 168 (1989) 193.
    63. W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, “Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests”, Thin Solid Films 270(1995) 431.
    64. P. J. Burnett, D. S. Rickerby, “The relationship between hardness and scratch adhesion“, Thin Solid Films 154 (1987) 403.
    65. W. S. Tait,” An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists”, Pair O Docs, Wisconsin (1994).
    66. J. R. Macdonald, “Impedance Spectroscopy”, John Wiley & Sons, New York, (1987).
    67. D. A. Jones, “Principle and Prevention of Corrosion”, 2nd ed., Simon & Schuster, (1996).
    68. F. Mansfeld, “Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection”, Electrochimica Acta, 35 (1990) 1533.
    69. A. J. Ellis, M. Haw, Materials World, 11, (1997) 136.
    70. Binary Alloy Phase Diagrams, vol. 1, American Society of Metals, Metals Park, OH 44073 (1986) 557.
    71. L. E. Davis, N. C. MacDonald, P.W. Palmberg, G.E. Riach, R.E. Weber, Handbook of Auger Electron Spectroscopy, 2nd ed, Physical Electronics Industries, Inc, Eden Prairie, MA, 1976.
    72. G. Berg, C. Friedrich, E. Broszeit, C. Berger, “Development of chromium nitride coatings substituting titanium nitride”, Surf. Coat. Technol., 86-87 (1996) 184.
    73. H. Jensen, U. M. Jensen, G. N. Pedersen, G. Sorensen, “Influence of the reactive gas flow on chromium nitride sputtering“, Surf. Coat. Technol., 59 (1993) 135.
    74. W. Herr, B. Matthes, E. Broszeit, M. Meyer, R. Suchentrnnk, “Influence of substrate material and deposition parameters on the structure, residual stresses, hardness and adhesion of sputtered CrxNy hard coatings”, Surf. Coat. Technol., 60 (1993) 428.
    75. W. Herr, B. Matthes, E. Broszeit, M. Meyer, R. Suchentrnnk, “Fundamental properties and tribological wear behaviour of sputtered Cr---CrN coatings on light metals “, Surf. Coat. Technol., 57 (1993) 77.
    76. B. NavinSek, P. Panjan and A. Cvelbar, “Characterization of low temperature CrN and TiN (PVD) hard coatings“, Surf. Coat. Technol., 741 75 (1995) 155.
    77. D. Y. Wang, K. W. Weng, C. L. Chang, W. Y. Ho, “Synthesis of Cr3C2 coatings for tribological applications “, Surf. Coat. Technol. 120-121 (1999), 622.
    78. R. L. Boxman, D. M. Sanders, P. J. Martin, Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications, Noyes, Park Ridge, NJ, 1995.
    79. I. I. Aksenov, V. A. Belous, V. G. Padalka and V. M. Khoroshikh, “Transport of plasma streams in a curvilinear plasma-optics system”, Sov. J. Plasma Phys., 4 (1978) 425.
    80. P. J. Martin, A. Bendavid, “Review of the filtered vacuum arc process and materials deposition”, Thin Solid Films 394 (2001), 1.
    81. M. Hakovirta, V. M. Tiainen, P. Pekko, “Techniques for filtering graphite macroparticles in the cathodic vacuum arc deposition of tetrahedral amorphous carbon films “, Diamond Relat. Mater. 8 (1999) 1183.
    82. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G.E. Riach, R.E. Weber, Handbook of Auger Electron Spectroscopy, 2nd ed, Physical Electronics Industries, Inc, Eden Prairie, MA, 1976.
    83. J. L. Vossen, W. Kern, Handbook of Thin film processes, vol. II, Academic Press, 1991.
    84. Marvin J. Udy, Chromium, vol. II : metallurgy of chromium and its alloys, New York Reinhold Publishing Co., 1956.
    85. A. A. Edigaryan, V. A. Safonov, E. N. Lubnin, L. N. Vykhodtseva, G. E. Chusova, Yu. M. Polukarov, “Properties and preparation of amorphous chromium carbide electroplates”, Electrochim. Acta 47 (2002) 2775.
    86. L. Cunha, M. Andritschky, L. Rebouta, K. Pischow, “Corrosion of CrN and TiAlN coatings in chloride-containing atmospheres”, Surf. Coat. Technol. 116–119 (1999) 1152.
    87. Powder Diffraction File, Joint Committee on Powder Diffraction Standard, ASTM, Philadelphia, PA, 1996, Card 06-0694.
    88. S. Han, H. Y. Chen, Z. C. Chang, J. H. Lin, C. J. Yang, F. H. Lu, F. S. Shieu , H. C. Shih,, “Effect of metal vapor vacuum arc Cr-implanted interlayers on the microstructure of CrN film on silicon”, Thin Solid Films 436 (2003) 238.
    89. A. Kagawa, Y. Ohta, “Wear resistance of laser clad chromium carbide surface layers”, Mater. Sci. Technol. 11 (1995), 515.
    90. H. O. Pierson, Handbook of Refractory Carbides and Nitrides, (1996), 101.
    91. W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, “Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests “, Thin Solid Films 270(1995) 431.
    92. C. Bergman, “Ion flux characteristics in arc vapor deposition of TiN“, Surf. Coat. Technol. 36 (1988), 243.
    93. D. P. Liu, G. Benstetter, E. Lodermeier, “Surface roughness, mechanical and tribological properties of ultrathin tetrahedral amorphous carbon coatings from atomic force measurements”, Thin Solid Films 436 (2003) 244.
    94. M. K. Fung, W. C. Chan, K. H. Lai, I. Bello, C. S. Lee, N. B. Wong, S. T. Lee, J. Noncryst. Solids 254 (1999) 678.
    95. C. Kral, W. Lengauer, D. Rafaja, P. Ettmayer, “Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides“, J. Alloys Comp., 265 (1998) 215.
    96. P. J. Burnett, D. S. Rickerby, “The relationship between hardness and scratch adhesion”, Thin Solid Films 154 (1987) 403.
    97. W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, “Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests”, Thin Solid Films 270(1995) 431.
    98. E. Kusano, M. Kitagawa, Y. Kuroda, H. Nanto, A. Kinbara, “Adhesion and hardness of compositionally gradient TiO2/Ti/TiN, ZrO2/Zr/ZrN, and TiO2/Ti/Zr/ZrN coatings”, Thin Solid Films 334(1998) 151.
    99. K. L. Chang, S. Han, J. H. Lin, J. W. Hsu, H. C. Shih, “The effect of MEVVA implanted Cr on the corrosion resistance of CrN coated low alloy steel by cathodic arc plasma deposition”, Surf. Coat. Technol. 172 (2003), 72.
    100. G. Bertrand, H. Mahdjoub, C. Meunier, “A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings”, Surf. Coat. Technol. 126 (2000) 199.
    101. L. Cunha, M. Andritschky, L. Rebouta, K. Pischow, “Corrosion of CrN and TiAlN coatings in chloride-containing atmospheres”, Surf. Coat. Technol. 116–119 (1999) 1152.
    102. S. H. Ahn, Y. S. Choi, J. G. Kim, J.G. Han, “A study on corrosion resistance characteristics of PVD Cr-N coated steels by electrochemical method”, Surf. Coat. Technol. 150 (2002) 319.
    103. S. Han, J. H. Lin, D. Y. Wang, F. H. Lu, H. C. Shih,”Corrosion resistance of chromium nitride on low alloy steels by cathodic arc deposition”, J. Vac. Sci. Technol. A 19(4), 2001.
    104. C. Liu, Q. Bi, A. Matthews, “EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution”, Corros. Sci. 43 (2001) 1953.
    105. C. C. Lin, J. W. Lee, K. L. Chang, W. J. Hsieh, C. Y. Wang, Y. S. Chang, H. C. Shih, “The effect of the substrate bias voltage on the mechanical and corrosion properties of chromium carbide thin films by filtered cathodic vacuum arc deposition”,Surf. Coat. Technol. 200 (2006) 2679.
    106. C. C. Lin, W. J. Hsieh, J. H. Lin, U. S. Chen, X. J. Guo, H. C. Shih, “Formation and characterization of chromium carbide films deposited using a 90o bend magnetic filtered cathodic vacuum arc system”, Surf. Coat. Technol. 200 (2006) 5052.
    107. K. J. Vetter, “Electrochemical Kinetics”, Academic, New York, (1961) 732.
    108. C. Wagner, W. Traud, Z. Elektrochem. 44, (1938) 391.
    109. S. Han, J. H. Lin, S. H. Tsai, S. C. chung, D. Y. Wang, F. H. Lu, H. C. Shih, Surf. Coat. Technol. 133-134 (2000) 460.
    110. C. Liu, A. Leyland, Q. Bi, A. Matthews, “Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings”, Surf. Coat. Technol. 141(2001) 164.
    111. A.J. Bard, L.R. Faulanker, Electrochemical Methods, Wiley, New York, (1987) 16.
    112. S.C. Chung, S.L. Sung, C.C. Hsien, H.C. Shih, “Application of EIS to the initial stages of atmospheric zinc corrosion”, J. Appl. Electrochem. 30 (2000) 607.
    113. C. Liu, Q. Bi, H. Ziegele, A. Leyland, A. Matthews, “Structure and corrosion properties of PVD Cr–N coatings”, J. Vac. Sci. Technol. A20 (3) (2002) 772.
    114. D. Jones, Principles and Prevention of Corrosion, second ed., Prentice-Hall, Upper Saddle River, NJ, 1996.
    115. R. E. Melchers, “Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel”, Corros. Science 45 (2003) 923.
    116. K. L. Chang, S. C. Chung, S. Han, J. W. Hsu, H. C. Shih, “Effect of metal vapor vacuum arc-implanted Cr on the electrochemical behavior of CrN-coated steels”, J. Mater. Res. 19(8) (2004) 2448.
    117. R. M. souto, H. Alanyali, “Electrochemical characteristics of steel coated with TiN and TiAlN coatings”, Corros. Sci. 42, (2000) 2201.
    118. C. Liu, Q. Bi, A. Leyland, A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part I. Establishment of equivalent circuits for EIS data Modeling”, Corros. Sci.45, (2003) 1243.
    119. C. Liu, Q. Bi, A. Leyland, A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour”, Corros. Sci.45, (2003) 1257.
    120. J. Robertson, “Hard amorphous (diamond-like) carbons”, Prog. Solid State Chem. 21, (1991) 199.
    121. J. Robertson, “Recombination and photoluminescence mechanism in hydrogenated amorphous carbon”, Phys. Rev. B 53, (1996) 16302.
    122. X. W. Liu, C. H. Tseng, J. H. Lin, L. T. Chao, H. C. Shih, “Optical properties of amorphous carbon nitride synthesized on Si by ECR-CVD”, Surf. Coat. Technol. 135 (2001) 184.
    123. B. S. Satyanarayana, A. Hart, W.I. Milne, J. Robertson, “Field emission from tetrahedral amorphous carbon”, Diamond Relat. Mater. 7 (1998) 656.
    124. X. W. Liu, S. H. Tsai, L. H. Lee, M. X. Yang, A. C. M. Yang, I. N. Lin, H. C. Shih, “Electron field emission from amorphous carbon nitride synthesized by electron cyclotron resonance plasma”, J. Vac. Sci. Technol., B 18 (2000) 1840.
    125. Y. Hayashi, K. Hagimoto, H. Ebisu, M.K. Kalaga, T. Soga, M. Umeno, T. Jimbo, “Effect of Radio Frequency Power on the Properties of Hydrogenated Amorphous Carbon Films Grown by Radio Frequency Plasma-Enhanced Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 39 (2000) 4088.
    126. S. Adhikary, X. M. Tian, S. Adhikari, A.M.M. Omer, H. Uchida, M. Umeno, “Bonding defects and optical band gaps of DLC films deposited by microwave surface-wave plasma CVD”, Diamond Relat. Mater. 14 (2005) 1832.
    127. B. G. Yacobi, D. B. Holt, Cathodoluminescence microscopy of inorganic solids, Plenum Press, New York 1990.
    128. W. J. Hsieh, C. C. Lin, U. S. Chen, Y. S. Chang, H. C. Shih, “Cathodoluminescence of the a-C:N films deposited by a filtered cathodic arc plasma system”, Diamond Relat. Mater. 14 (2005) 93.
    129. W. J. Hsieh, S. H. Lai, L. H. Chan, K. L. Chang, H. C. Shih, “Cathodoluminescence and electron field emission of boron-doped a-C:N films”, Carbon 43 (2005) 820.
    130. F. Tuinstra, J.L. Koening, “Raman Spectrum of Graphite”, J. Chem. Phys. 53 (1970) 1126.
    131. K. W. K. Gilkes, H. S. Sands, D. N. Batchelder, J. Robertson, W.I. Milne, “Direct observation of sp3 bonding in tetrahedral amorphous carbon using ultraviolet Raman spectroscopy”, Appl. Phys. Lett. 70 (1980) 1997.
    132. V. I. Merkulov, J. S. Lannin, C. H. Munro, S. A. Asher, V. S. Veerasamy, W. I. Milne, “Studies of Tetrahedral Bonding in Diamondlike Amorphous Carbon”, Phys. Rev. Lett. 78 (1997) 4869.
    133. A. C. Ferrari, “Determination of bonding in diamond-like carbon by Raman spectroscopy”, Diamond Relat. Mater. 11 (2002) 1053.
    134. X. Han, F. Yan, A. Zhang, P. Yan, B. Wang, W. Liu, Z. Mu, “Structure and tribological behavior of amorphous carbon films implanted with Cr_ ions”, Mater. Sci. Engineer. A348 (2003) 319.
    135. N. F. Mott, E. A. Davis, “Electronic process in non-crystalline materials”, Clarendon press, Oxford, (1971) 483.
    136. A. Whitaker, J. W. Jeffery, “The crystal structure of chromium hexaearbonyl”, Acta Cryst., 23, (1967) 977.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE