簡易檢索 / 詳目顯示

研究生: 洪建彰
Hung, Chien-Chang
論文名稱: A Variable-Length FFT Processor For MIMO OFDM Systems
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 產業研發碩士積體電路設計專班
Industrial Technology R&D Master Program on IC Design
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 多重輸入輸出正交分頻多工快速傅立葉轉換
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在新一代無線通訊系統, 多重輸入輸出(Multiple-Input Multiple-Output, MIMO) 正交分頻多工(Orthogonal Frequency Division Multiplexing) 的技術中, 快速傅立葉轉換(Fast Fourier Transform, FFT) 佔有相當大的重要性。而快速傅立葉轉換處理器最基本的元件,蝴蝶運算器(butterfly) 會因等待資料的輸入而導致整體硬體使用率的下降。我們利用適當大小的前授記憶體(feed forward memory) 提昇蝴蝶運算器的硬體使用率, 且將之用於多重
    輸入輸出系統上。且利用適當的記憶體配置方式, 妥善利用回授記憶體, 來降低其硬體複雜度。我們提供傅立葉點數128到2048可變長度的快速傅立葉處理器, 而針對多種傅立葉長度的設計, 在演算法上, 我們使用二維拆解(two-dimensional decompose) 及基底42的方式。
    基底42高基底演算法, 可以減少複數乘法的產生, 而使用二維拆解的方式, 分別處理四冪次方及非四冪次方的傅立葉點數。最後, 我們將此用於4X4多重輸入輸出系統的可變長度快速傅立葉轉換器實現成硬體。最後我們以Cell-based 的設計方式, 將此架構實現於晶片。使用製程為UMC 90um , 核心面積(core area) 為2.14987mm2 , 操作頻率在83.3MHz , 符合3GPP-LTE 的規範。


    In this paper, we present a variable-length 256-point to 2048-point FFT processor for
    4x4 Multiple Input Multiple Output(MIMO) Orthogonal Frequency Division Multiplex-
    ing(OFDM) systems. In general, the amount the FFT processors for MIMO system are
    dependent on the maximum required of data sequences and the basic unit butterfly has
    the 1/r idle time where r is radix-r. It is area-ineffective for VLSI implement. By the
    proposed butterfly sharing technique, the effective hardware utilization can be improved
    to 100%. The radix-42 algorithm is sufficient to deal with the four data sequences simul-
    taneous and reduce the hardware complexity and cost. The signal quantization noise
    ratio(SQNR) is over 43 dB for QPSK and 16/64-QAM signals. Moreover we imple-
    ment the variable length FFT processor in UMC 90um technology. The core area is
    3.193248mm2 with 83.3MHz.

    1 緒論1 1.1 研究動機 1.2 章節概要 2 快速傅立葉轉換 2.1 簡介 2.2 快速傅立葉轉換演算法 2.2.1 基底為2的分頻傅立葉轉換(Decimation in Frequency Radix-2 Algorithm) 2.2.2 基底為4的分頻傅立葉轉換(Decimation in Frequency Radix-4 Algorithm) 2.2.3 基底為22的分頻傅立葉轉換(Decimation in Frequency Radix-22 Algorithm) 2.3 快速傅立葉轉換的硬體架構 2.3.1 單一路徑延遲回授架構(Single-path Delay Feedback) 2.3.2 多路徑延遲交換架構(Multi-path Delay Commutator) 3 快速傅立葉轉換在演算法上的改善 3.1 基底4演算法(Radix-4) 3.2 基底42演算法(Radix-42) 3.2.1 二維演算法-基底42及基底2 (Two-dimensional Algorithm Radix-42\ Radix-2) 3.2.2 二維演算法-基底42及基底4 (Two-dimensional Algorithm Radix-42\ Radix-4) 3.2.3 二維演算法-基底42及基底8 (Two-dimensional Algorithm Radix-42\ Radix-8) 3.2.4 二維演算法-基底4及基底2 (Two-dimensional Algorithm Radix-4 \Radix-2) 4 新型管線式硬體架構設計 4.1 共享蝴蝶運算器(Butterfly Sharing, BS) 4.2 共享蝴蝶運算及乘法器(Butterfly and Multiplier Sharing, BMS) 4.2.1 非正規傅立葉點數處理方式 4.2.2 可變架構之快速傅立葉轉換電路設計 5 硬體架構模擬與結果 5.1 複數乘法器(Complex Multiplier) 5.2 固定點數模擬(Fixed-point Simulation) 5.3 記憶體設計(The Memory Optimization) 5.4 硬體模擬與比較結果 5.4.1 硬體比較 5.4.2 硬體模擬結果(RTL simulation) 5.4.3 晶片佈局及規格(Chip layout and specification) 6 結論

    [1] Yu-Wei Lin and Chen-Yi Lee. ”Design of an FFT/IFFT Processor for MIMO
    OFDM Systems”. IEEE Trans. Circuits and Systems - I: Regular Papers,
    54(4):807–815, Apr 2007.
    [2] Mau-Shih Lee Chih-Peng Fan and Guo-An Su. ”A 256-Point Dataflow Scheduling
    2x2 MIMO FFT IFFT Processor for IEEE 802.16 WMAN”. APCCAS 2006., pages
    1935–1938, Dec 2006.
    [3] S. He and M. Torkelson. ”Designing pipeline FFT processor for OFDM
    (de)modulation”. ISSSE 98., pages 257–262, Oct 1998.
    [4] Hsuan-Yu Liu Yu-Wei Lin and Chen-Yi Lee. ”A 1-GS/s FFT/IFFT processor for
    UWB applications”. IEEE Journal of Solid-State Circuits, 40(8):1726–1735, Aug
    2005.
    [5] C.-H. Lin J.-C. Kuo, C.-H. Wen and A.-Y. Wu. ”VLSI Design of a Variable-Length
    FFT/IFFT Processor for OFDM-Based Communication Systems”. EURASIP
    Journal on applied Signal Processing, 2003(13):1306–1316, Dec 2003.
    [6] Yu-Wei Lin Yuan Chen and Chen-Yi Lee. ”A Block Scaling FFT/IFFTProcessor
    for WiMAX Applications”. Proc. IEEE Int. Conf. Asian Solid-State Circuits (ASSCC)
    , pages 203–206, Nov 2006.
    [7] W.-C. Yeh and C.-W. Jen. ”High-speed and low-power split-radix FFT”. IEEE
    Trans. Acoust., Speech, Signal Process., 51(3):864–874, March 2003.
    [8] B.M.Bass. ”A Low-Power, High-Performance, 1024-Point FFT Processor”. IEEE
    Journal of Solid-State Circuits, 34(3):380–387, March 1999.
    [9] T.-D. Chiueh Y.-T. Lin and P.-Y. Tsai. ”Low-power variable-length fast Fourier
    transform processor”. IEE Proc.-Comput. Digit. Tech, 152(4):499–506, July 2005.
    [10] Mau-Shih Lee Chih-Peng Fan and Guo-An Su. ”A Low Multiplier and Multiplica-
    tion Costs 256-point FFT Implementation with Simplified Radix-24 SDF Architec-
    ture”. APCCAS 2006., pages 1935–1938, Dec 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE