研究生: |
殷裕勝 Yu-Sheng Yin |
---|---|
論文名稱: |
氣相層析同位素比質譜儀應用於茶葉製造過程及產源鑑定之研究 GC-IRMS study of manufacturing process and geographical classification of tea |
指導教授: |
凌永健
Yong-Chien Ling |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 1冊(116頁) |
中文關鍵詞: | 氣相層析同位素比質譜儀 、固相微萃取 、製造過程 、產源鑑定 、茶 |
外文關鍵詞: | GC-IRMS, SPME, manufacturing process, geographical classification, tea |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
茶葉採收後,需要經過一連串的人為加工處理製造過程,才能製成香醇濃郁的成茶。研究製造過程中的變化,可了解其生化反應機制、更可進而提升成茶品質;除此之外,茶葉的品質與價格,亦會受到產地、季節等自然因素的影響,而有顯著差異。傳統由經驗豐富的評茶師進行官能品鑑,以區分品質與產地的方法,往往易受到主觀、嗅覺疲勞等因素,而容易發生誤判。建立科學化可靠準確的品質與產源鑑定分析技術,著實有其必要性。
本研究利用化學指紋圖譜與化合物別同位素比分析的觀念,以符合綠色化學原則的固相微萃取作為前處理方式,氣相層析質譜儀(GC/MS)與氣相層析同位素比質譜儀(GC/IRMS)作為分析儀器,針對茶葉中揮發性香氣成分做研究,以了解其和製程及產源之關聯。
本研究使用GC/MS分析結果發現,烏龍茶製造過程中揮發性香氣成分,如linalool、(Z)-3-hexen-1-ol,indole、□-farnesene,隨著萎凋過程而增加,到炒菁前香氣最為濃郁,之後的高溫炒菁以停止酵素作用,導致香氣含量銳減而趨於穩定;使用GC/IRMS亦發現,同位素比在炒菁後亦較炒菁前穩定,和GC/MS結果一致,證明炒菁確實能有效固定茶葉揮發性香氣成分。
本研究針對GC/MS圖譜進行化學指紋判別,可以分辨各主要紅茶產區(印度、斯里蘭卡、中國、越南、台灣)的差異性。使用GC/IRMS分析,以t-Test檢定不同紅茶產區之間的差異,可以有效區分台灣與斯里蘭卡、印度、越南產區。
Tea is a widely consumed non-alcohol drink and its flavour has been shown to vary during manufacturing process and affected by geographical condition. Aroma is among one of the important factors to determine the characteristic and quality of tea, and it is generated from odorless precursors during the tea manufacturing process of withering, panning, rolling, and drying. More than 600 volatile flavour compounds(VFCs)were reported to relate to tea aroma. This thesis aims to use oolong tea manufacturing process to evaluate the aroma forming pathway and to improve the aroma eventually. The other aim is to accomplish geographical classification and to identify the origins of black tea.
To achieve the aforementioned goal, we integrate chemical fingerprint and compound specific isotope ratio analysis to observe the variation during manufacturing and due to origins. SPME/GC/MS and SPME/GC/IRMS method were developed for quantitative and isotope ratio analysis of VFCs in tea, respectively.
The content of VFCs in tea increases with withering process and reaches its maximum just before panning. Higher panning temperature was used to stop the enzymatic activity The content, composition and isotope ratio of VFCs after panning becomes more stable, justifying that panning would stable the VFCs. Base on results from compound specific carbon isotope ratio analysis and t-Test, Taiwan tea can be distinguished from India, Sri Lanka, and Vietnam tea.
1.1 Laura Maeztu;Cristina Sanz;Susana Andueza;M. Paz De Pena;Jose Bello;Concepcion Cid (2001)Characterization of Espresso Coffee Aroma by Static Headspace GC-MS and Sensory Flavor Profile J. Agric. Food Chem. 49, 5437-5444.
1.2 經濟部國家標準檢驗局(1986)茶葉檢驗法, CNS1009
1.3 魏夢麗;呂秀英 (2002)官能品評資料的統計方法之正確使用 農業試驗所技術服務季刊 13, 32-37.
1.4 Yukihiko Hara;Shao-Jun Luo;Robert Louis Wickremasinghe;Tei Yamanishi(1995)Special Issue on Tea. Food Reviews International 11, 371-546.
1.5 林木連(2003)台灣的茶葉, 遠足文化, 臺灣
1.6 吳德亮(2005)台灣找茶, 民生報事業處, 臺灣
1.7 Yuriko Ito;Akio Sugimoto;Takami Kakuda;Kikue Kubota (2002) Identification of Potent Odorants in Chinese Jasmine Green Tea Scented with Flowers of Jasminum sambac J. Agric. Food Chem. 50, 4878-4884.
1.8 蔡永生;張如華;林建森 (2000)台灣現有產製茶類主要化學成份含量之分析與判別 臺灣茶業研究彙報 19, 139-154.
1.9 李淑美;陳右人 (2003)溫度對茶樹茶菁產量和品質之影響 臺灣茶業研究彙報 22, 43-56.
1.10 林金龍;簡錦漢;張靜貞;梁啟源;周雨田;吳中書 (2006)台灣經濟最近情勢. 台灣經濟預測與政策 36, 143-165.
1.11 行政院經濟建設委員會(1995)國土復育條例草案,行政院第2941次院會核定通過
1.12 行政院農業委員會茶業改良場(2002)製茶技術
1.13 Yong-xing Zhu;Herve Huang;You-ying Tu (2006)A review of recent studies in China on the possible beneficial health effects of tea Int. J. Food Sci. and Technol.. 41, 333-340.
1.14 Gow-Chin Yen;Hui-Yin Chen (1995)Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity J. Agric. Food Chem. 43, 27-32.
1.15 Midori Kumamoto;Tamiyoshi Sonda (1998)Evaluation of the Antioxidative Activity of Tea by an Oxygen Electrode Method Biosci. Biotechnol. Biochem. 62, 175-177.
1.16 Yukiaki Kuroda;Yukihiko Hara(1999)Antimutagenic and anticarcinogenic activity of tea polyphenols Mutation Research 436, 69-97.
1.17 Rosario Monteiro;Isabel Azevedo;Conceicao Calhau (2006)Modulation of Aromatase Activity by Diet Polyphenolic Compounds J. Agric. Food Chem., ASAP
1.18 T.T.C. Yang;M.W.L. Koo (1997)Hypocholesterolemic Effects of Chinese Tea Pharmacol. Res. 35, 505-512.
1.19 Lekh Raj Juneja;Djong-Chi Chu;Tsutomu Okubo;Yukiko Nagato;Hidehiko Yokogoshi (1999)L-theanine –a unique amino acid of green tea and its relaxation effect in humans Trends Food Sci. & Technol.. 10, 199-204.
1.20 William Rumpler;James Seale;Beverly Clevidence;Joseph Judd;Eugene Wiley;Shigeru Yamamoto;Tatsushi Komatsu;Tetsuya Sawaki;Yoshiyuki Ishikura;Kazuaki Hosoda (2001)Oolong Tea Increases Metabolic Rate and Fat Oxidation in Men J. Nutr. 131, 2848-2852.
1.21 L-K Han;T Takaku;J Li;Y Kimura;H Okuda (1999)Anti-obesity action of oolong tea. Int. J. Obesity 23, 98-105.
1.22 陳國任;林金池(2003)優良比賽茶樣等級間品質與容重之探討 臺灣茶業研究彙報 22, 143-152.
1.23 International Tea Committee (2005)Annual bulletin of statistics. UK
1.24 行政院農業委員會農糧署(2004)93年農業統計年報
1.25 國際貿易局(2004)中華民國進出口貿易統計
1.26 Mitsuya Shimoda;Hiroko Shigematsu;Hideki Shiratsuchi;Yutaka Osajima (1995)Comparison of Volatile Compounds among Different Grades of Green Tea and Their Relation to Odor Attributes J. Agric. Food Chem. 43, 1621-1625.
1.27 Michiko Kawakami;Subhendu N. Ganguly;J. Banerjee;Akio Kobayashi (1995)Aroma Composition of Oolong Tea and Black Tea by Brewed Extraction Method and Characterizing Compounds of Darjeeling Tea Aroma J. Agric. Food Chem. 43, 200-207.
1.28 Christian Schuh;Peter Schieberle (2006)Characterization of the Key Aroma Compounds in the Beverage Prepared from Darjeeling Black Tea:Quantitative Differences between Tea Leaves and Infusion J. Agric. Food Chem. 54, 916-924.
1.29 Dongmei Wang;Takako Yoshimura;Kikue Kubota;Akio Kobayashi (2000)Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 1 Qualitative and Quantitative Analysies of Glycosides with Aglycons as Aroma Compounds J. Agric. Food Chem. 48, 5411-5418.
1.30 Dongmei Wang;Eriko Kurasawa;Yuichi Yamaguchi;Kikue Kubota;Akio Kobayashi (2001)Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 2 Changes in Glycoside Contents and Glycosidase Activities in Tea Leaves during the Black Tea Manufacturing Process J. Agric. Food Chem. 49, 1900-1903.
1.31 Sachiko Matsumura;Shunya Takahashi;Mariko Nishikitani;Kikue Kubota;Akio Kobayashi (1997)The Role of Diglycosides as Tea Aroma Precursors:Synthesis of Tea Diglycosides and Specificity of Glycosidases in Tea Leaves J. Agric. Food Chem. 45, 2674-2678.
1.32 Ramaswamy Ravichandran (2002)Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma Food Chem. 78, 23-28.
1.33 N. Togari;A. Kobayashi;T. Aishima (1995)Pattern recognition applied to gas chromatographic profiles of volatile components in three tea categories Food Res. Int. 28, 495-502.
1.34 李敏雄;林基增 (1985)鐵觀音在製造過程中香味成分之變化 J. Chinese Agric. Chem. Soc. 23, 127-132.
1.35 Lihu Yao;Xu Liu;Yueming Jiang;Nola Caffin; Bruce D’Arcy;Riantong Singanusong;Nivedita Datta;Ying Xu (2006)Compositional analysis of teas from Australian supermarkets Food Chem. 94, 115-122.
1.36 Yuegang Zuo;Hao Chen;Yiwei Deng (2002)Simultaneous determination of catechins, caffeine and gallic acids in green, oolong, black and pu-erh teas using HPLC with a photodiode array detector. Talanta 57, 307-316.
1.37 Jose A. B. Baptista;Joaquim F. da P Tavares;Rita C. B. Carvalho (1998)Comparison of catechins and aromas among different green teas using HPLC/SPME-GC Food Res. Int. 31, 729-736.
1.38 B. B. Borse;L. Jagan Mohan Rao;S. Nagalakshmi;N. Krishnamurthy (2002)Fingerprint of black teas from India:identification of the region-specific characteristics Food Chem. 79, 419-424.
1.39 Antonio Moreda-Pineiro;Andrew Fisher;Steve J. Hill (2003)The classification of tea according to region of origin using pattern recognition techniques and trace metal data. J. Food Composition Anal. 16, 195-211.
1.40 Pedro L. Fernandez-Caceres;Maria J. Martin;Fernando Pablos;A. Gustavo Gonzalez (2001)Differentiation of Tea Varieties and Their Geographical Origin According to their Metal Content. J. Agric. Food Chem. 49, 4775-4779.
1.41 Antonio Moreda-Pineiro;Ana Marcos;Andrew Fisher;Steve J. Hill (2001)Evaluation of the effect of data pre-treatment procedures on classical pattern recognition and principal components analysis:a case study for the geographical classification of tea. J. Environ. Monit. 3, 352-360.
1.42 Mitsuya Shimoda;Hiroko Shigematsu;Hideki Shiratsuchi;Yutaka Osajima (1995)Comparison of the Odor Concentrates by SDE and Adsorptive Column Method from Green Tea Infusion J. Agric. Food Chem. 43, 1616-1620.
1.43 Narayanan Gopalakrishnan;Cadavallur S. Narayanan (1991)Supercritical Carbon Dioxide Extraction of Cardamom J. Agric. Food Chem. 39, 1976-1978.
2.1 Hiroyuki Kataoka;Heather L. Lord;Janusz Pawliszyn (2000)Application of solid-phase microextraction in food analysis. J. Chromatogr. A 880, 35-62.
2.2 Waldemar Wardencki;Magdalena Michulec;Janusz Curylo (2004) A review of theoretical and practical aspects of solid-phase microextraction in food analysis. Int.l J. Food Sci. Tech. 39, 703-717.
2.3 Douglas E. Raynie (2006)Modern Extraction Techniques. Anal. Chem. ASAP
2.4 Cheryl Palma-Harris;Roger F. McFeeters;Henry P. Fleming (2001) Solid-Phase Microextraction Technique for Measurement of Generation of Fresh Cucumber Flavor Compounds. J. Agric. Food Chem. 49, 4203-4207.
2.5 Christophe Peres;Christine Viallon;Jean-Louis Berdague (2001) Solid-Phase Microextraction Mass Spectrometry:A New Approach to the Rapid Characterization of Cheeses. Anal. Chem. 73, 1030-1036.
2.6 M. Riu-Aumatell;M. Castellari;E. LLLopez-Tamames;S. Galassi;S. Buxaderas (2004)Characterisation of volatile compounds of fruit juices and nectars by HS/SPME and GC/MS. Food Chem. 87, 627-637.
2.7 Rosa A. Perez;Consuelo Sanchez-Brunete;Rosa M. Calvo;Jose L. Tadeo (2002)Analysis of Volatile from Spanish Honeys by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry. J. Agric. Food Chem. 50, 2633-2637.
2.8 Janusz Pawliszyn (1990)Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 62, 2145-2148.
2.9 Supelco (1998)Solid Phase Microextraction:Theory and Optimization of Conditions. Supelco Bulletin 923
2.10 W. Meier-Augenstein (1999)Applied gas chromatography coupled to isotope ratio mass spectrometry. J. Chromatogr. A, 842, 351-371.
2.11 Torsten C. Schmidt;Luc Zwank;Martin Elsner;Michael Berg;Rainer U. Meckenstock;Stefan B. Haderlein (2004)Compound-specific stable isotope analysis of organic contaminants in natural environments:a critical review of the state of the art, prospects and future challenges. Anal. Bioanal. Chem., 378, 283-300.
2.12 I T Platzner;K Habfast;A J Walder;A Goetz (1997)Modern Isotope Ratio Mass Spectrometry. J. Wiley, New York, USA
2.13 Dawn A. Merritt;Katherine H. Freeman;Margaret P. Ricci;Stephen A. Studley;J. M. Hayes (1995)Performance and Optimization of a Combustion Interface for Isotope Ratio Monitoring Gas Chromatography/ Mass Spectrometry. Anal. Chem., 67, 2461-2473.
2.14 Herbert Budzikiewicz;Ronald D. Grigsby (2006)Mass Spectrometry and Isotopes:A Century of Research and Discussion. Mass Spectrom. Rev. 25, 146-157.
2.15 L J C Bluck;W A Coward (2004)The application of a simple algorithm to isotope ratio measurements by gas chromatography/ combustion/ isotope ratio mass spectrometry. Meas. Sci. Technol., 15, N21-N24.
2.16 Elke Richling;Christina Preston;Dominique Kavvadias;Kathrin Kahle;Christopher Heppel;Silvia Hummel;Thorsten Konig;Peter Schreier (2005)Determination of the 2H/1H and 15N/14N Ratios of Alkylpyrazines from Coffee Beans by Isotope Ratio Mass Spectrometry. J. Agric. Food Chem., 53, 7925-7930.
2.17 Jochen Jung;Sabine Sewenig;Uwe Hener;Armin Mosandl (2005) Comprehensive authenticity assessment of lavender oils using multielement/multicomponent isotope ratio mass spectrometry analysis and enantioselective multidimensional gas chromatography-mass spectrometry. Eur. Food Res. Technol., 220, 232-237.
2.18 Simon Kelly;Karl Heaton;Jurian Hoogewerff (2005)Tracing the geographical origin of food:The application of multi-element and multi-isotope analysis. Trends in Food Sci. Technol., 16, 555-567.
2.19 Sabine Sewenig;Uwe Hener;Armin Mosandl (2003)Online determination of 2H/1H and 13C/12C isotope ratios of cinnamaldehyde from different sources using gas chromatography isotope ratio mass spectrometry. Eur. Food Res. Technol., 217, 444-448.
2.20 Moritz hebestreit;Ulrich Flenker;Corinne Buisson;Francois Andre;Bruno Le Bizec;Hildburg Fry;Melanie Lang;Angelika Preiss Weigert;Katharina Heinrich;Simon Hird;Wilhelm Schanzer (2006) Application of Stable Carbon Isotope Analysis to the Detection of Testosterone Administration to Cattle. J. Agric. Food Chem., ASAP
2.21 C. Buisson;M. Hebestreit;A. Preiss Weigert;K. Heinrich;H. Fry; U. Flenker;S. Banneke;S. Prevost;F. Andre;W. Schaenzer;E. Houghton;B. Le Bizec (2005)Application of Stable Carbon Isotope Analysis to the Detection of 17β-estradiol administration to cattle. J. Chromatogr. A, 1093, 69-80.
2.22 D. Hunkeler;N. Chollet;X. Pittet;R. Aravena;J.A. Cherry;B.L. Parker (2004)Effect of source variability and transport processes on carbon isotope ratios of TCE and PCE in two sandy aquifers. J. Contam. Hydro., 74, 265-282.
2.23 D. Hunkeler;R. Aravena;E. Cox (2002)Carbon Isotopes as a Tool To Evaluate the Origin and Fate of Vinyl Chloride:Laboratory Experiments and Modeling of Isotope Evolution. Environ. Sci. Technol., 36, 3378-3384.
2.24 Prosenjit Ghosh;Willi A. Brand (2003)Stable isotope ratio mass spectrometry in global climate change research. Int. J. Mass Spectrom., 228, 1-33.
2.25 Gaston Giuliani;Marc Chaussidon;Henri-Jean Schubnel;Daniel H. Piat;Claire Rollion-Bard;Christian France-Lanord;Didier Giard;Daniel de Narvaez;Benjamin Rondeau (2000)Oxygen Isotopes and Emerald Trade Routes Since Antiquity. Science, 287, 631-633.
2.26 A.M. Pupin;M.J. Dennis;I. Parker;S. Kelly;T. Bigwood;M.C.F. Toledo (1998)Use of Isotopic Analyses To Determine the Authenticity of Brazilian Orange Juice. J. Agric. Food Chem., 46, 1369-1373.
2.27 James R. Ehleringer;John F. Casale;Michael J. Lott;Valerie L. Ford (2000)Tracing the geographical origin of cocaine. Nature, 408, 311-312.
2.28 M. Tsivou;N. Kioukia-Fougia;E. Lyris;Y. Aggelis;A. Fragkaki;X. Kiousi;Ph. Simitsek;H. Dimopoulou;I.-P. Leontiou;M. Stamou;M.-H. Spyridaki;C. Georgakopoulos (2006)An overview of the doping control analysis during the Olympic Games of 2004 in Athens, Greece. Anal. Chim. Acta, 555, 1-13.
2.29 S. Phillips (2002)Developing Forensic Applications of Stable Isotope Ratio Mass Spectrometry. FIRMS Conference
2.30 Marion H. O’Leary (1988)Carbon Isotopes in Photosynthesis. BioScience, 38, 328-336.
2.31 Simon D. Kelly;Christopher Rhodes;Janice H. Lofthouse;Dominic Anderson;Christine E. Burwood;M. John Dennis;Paul Brereton (2003) Detection of Sugar Syrups in Apple Juice by δ2H‰ and δ13C‰ Analysis of Hexmethylenetetramine Prepared from Fructose. J. Agric. Food Chem., 51, 1801-1806.
2.32 Elke Richling;Corinna Hohn;Bernhard Weckerle;Frank Heckel;Peter Schreier (2003)Authentication analysis of caffeine-containing foods via elemental analysis combustion/pyrolysis isotope ratio mass spectrometry. Eur. Food Res. Technol., 216, 544-548.
2.33 Katja Hor;Christiane Ruff;Bernhard Weckerle;Thorsten Konig;Peter Schreier (2001)Flavor Authenticity Studies by 2H/1H Ratio Determination Using On-line Gas Chromatography Pyrolysis Isotope Ratio Mass Spectrometry. J. Agric. Food Chem., 49, 21-25.
2.34 Dieter Juchelka;Thomas Beck;Uwe Hener;Frank Dettmar;Armin Mosandl (1998)Multidimensional Gas Chromatgraphy Coupled On-Line with Isotope Ratio Mass Spectrometry:Progress in the Analytical Authentication of Genuine Flavor Compounds. J. High Resol. Chromatogr., 21, 145-151.
2.35 Naoki Kurashima;Yukiko Makino;Setsuko Sekita;Yasuteru Urano;Tetsuo Nagano (2004)Determination of Origin of Ephedrine Used as Precursor for Illicit Methamphetamine by Carbon and Nitrogen Stable Isotope Ratio Analysis. Anal. Chem., 76, 4233-4236.
2.36 I.G. Parker;S.D. Kelly;M. Sharman;M.J. Dennis;D. Howie (1998)Investigation into the use of carbon isotope ratios of Scotch whisky congeners to establish brand authenticity using gas chromatography-combustion-isotope ratio mass spectrometry. Food Chem., 63, 423-428.
2.37 Sven Asche;Anthony L. Michaud;J. Thomas Brenna (2003)Sourcing Organic Compounds Based on Natural Isotopic Variations Measured by High Precision Isotope Ratio Mass Spectrometry. Curr. Org. Chem., 7, 1527-1543.
2.38 James R. Ehleringer;Donald A. Cooper;Michael J. Lott;Craig S. Cook (1999)Geo-location of heroin and cocaine by stable isotope ratios. Forensic Science Int., 106, 27-35.
2.39 Bernhard Weckerle;Elke Richling;Sandra Heinrich;Peter Schreier (2002)Origin assessment of green coffee by multi-element stable isotope analysis of caffeine. Anal. Bioanal. Chem., 374, 886-890.
2.40 John Dunbar;A.T. Wilson (1982)Determination of Geographic Origin of Caffeine by Stable Isotope Analysis. Anal. Chem., 54, 590-592.
2.41 O. Schmidt;J.M. Quilter;B. Bahar;A.P. Moloney;C.M.Scrimgeour;I.S. Begley;F.J. Monahan (2005)Inferring the origin and dietary history of beef from C, N and S stable isotope ratio analysis. Food Chem., 91, 545-549.
2.42 趙民德;謝邦昌 (2000)多變量分析, 曉園出版社, 臺灣
2.43 Barbara Weinert;Manuela Ulrich;Armin Mosandl (1999)GC-IRMS analysis of black Ceylon, Assam and Darjeeling teas. Z Lebensm Unters Forsch A, 208, 277-281.
2.44 Luc Zwank;Michael Berg;Torsten C. Schmidt;Stefan B. Haderlein (2003)Compound-Specific Carbon Isotope Analysis of Volatile Organic Compounds in the Low-Microgram per Liter Range. Anal. Chem., 75, 5575-5583.
3.1 D. Hunkeler;R. Aravena;B.J. Butler (1999)Monitoring Microbial Dechlorination of Tetrachloroethene in Groundwater Using Compound-Specific Stable Carbon Isotope Ratios:Microcosm and Field Studies. Environ. Sci. Technol. 33, 2733-2738.
3.2 Eric Lichtfouse (2000)Compound-specific isotope analysis. Application to archeelogy, biomedical science, biosynthesis, environment, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport. Rapid Commun. Mass Spectrom. 14, 1337-1344.
3.3 Luc Zwank;Michael Berg;Torsten C. Schmidt;Stefan B. Haderlein (2003)Compound-Specific Carbon Isotope Analysis of Volatile Organic Compounds in the Low-Microgram per Liter Range. Anal. Chem. 75, 5575-5583.
3.4 Hiroyuki Kataoka;Heather L. Lord;Janusz Pawliszyn (2000)Application of solid-phase microextraction in food analysis. J. Chromatogr. A 880, 35-62.
3.5 Michiko Kawakami;Subhendu N. Ganguly;J. Banerjee;Akio Kobayashi (1995)Aroma Composition of Oolong Tea and Black Tea by Brewed Extraction Method and Characterizing Compounds of Darjeeling Tea Aroma J. Agric. Food Chem. 43, 200-207.
3.6 Dongmei Wang;Kikue Kubota;Akio Kobayashi;I-Ming Juan (2001)Analysis of Glycosidically Bound Aroma Precursors in Tea Leaves. 3 Changes in Glycoside Contents of Tea Leaves during the Oolong Tea Manufacturing Process J. Agric. Food Chem. 49, 5391-5396.
3.7 林木連(2003)台灣的茶葉, 遠足文化, 臺灣
3.8 Ignaz J. Buerge;Thomas Poiger;Markus D. Muller;Hans-Rudolf Buser (2003) Caffeine, an Anthropogenic Marker for Wastewater Contamination of Surface Waters. Environ. Sci. Technol. 37, 691-700.
4.1 Council Regulation (EEC) No 2081/92, 1992
4.2 Gow-Chin Yen;Hui-Yin Chen (1995)Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity J. Agric. Food Chem. 43, 27-32.
4.3 Yukihiko Hara;Shao-Jun Luo;Robert Louis Wickremasinghe;Tei Yamanishi(1995)Special Issue on Tea. Food Reviews International 11, 371-546.
4.4 謝瑞忠(1997)二氧化碳超臨界流體方法抽取錫蘭肉桂葉香精研究 台灣林業科學, 12, 71-29.
4.5 Barbara Weinert;Manuela Ulrich;Armin Mosandl (1999)GC-IRMS analysis of black Ceylon, Assam and Darjeeling teas. Z Lebensm Unters Forsch A, 208, 277-281.