簡易檢索 / 詳目顯示

研究生: 陳龍稷
Chen, Lung-Chi
論文名稱: 乙烯基立體規則高分子的掌性誘導行為
Induced Circular Dichroism of Stereoregular Vinyl Polymers
指導教授: 何榮銘
Ho, Rong-Ming
口試委員: 劉瑞雄
蔡敬誠
蔣酉旺
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 68
中文關鍵詞: 圓二色光譜立體規則聚-2-乙烯吡啶乙烯基高分子誘導掌性
外文關鍵詞: Circular Dichroism, stereoregular, P2VP, vinyl polymer, ICD
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Among self-assembled architectures, helical morphology is probably the most fascinating texture in nature. By introducing the chirality into synthetic molecules, helical textures in different length scales can be obtained by self-assembling through interplay of secondary interactions (i.e., non-covalent bonding forces). For synthetic polymers, helical polymers could be classified into two types: static and dynamic helical polymers, depending on the nature of helical conformation. Interestingly, through non-covalent interaction, dynamic helical polymers with functional groups capable of interacting with optically active small molecules may adopt one-handed helical conformation through induced chirality. Most dynamic helical polymers have conjugated or peptide-based backbones so as to give rigidity of the main chain for the formation of helical conformation and also the absorption of chromophore on the backbone for examination of induced circular dichroism (ICD). However, the examples of polyolefins and vinyl polymers with induced chirality are rare.
    In this study, a series of intrinsically achiral poly(vinyl pyridine)s, including isotactic poly(2-vinyl pyridine) (iP2VP), atactic poly(2-vinyl pyridine) (aP2VP), and syndiotactic poly(2-vinyl pyridine) (sP2VP) have been synthesized to study the mechanism of induced chirality on vinyl polymers. Carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR) was used to determine the tacticity of synthesized P2VPs by the signal of quaternary aromatic carbon which has been claimed to be the most stereosensitive one among the aromatic carbons. In contrast to stereoirregular aP2VP, the 13C-NMR spectrum exhibited high stereoregularity for the iP2VP and sP2VP synthesized. To examine ICD phenomenon resulting from induced chirality or induced helicity on stereoregular polymers, Circular dichroism (CD) spectroscopy was used to measure the optical activity of the polymers in solution. All P2VPs are optical inactive polymers adopting random-coil conformation in dilute solution. However, through non-covalent bonding of chiral dopant, ICD of the tactic P2VPs, in particular isotactic P2VP (iP2VP), can be driven by the formation of helical conformation with preferred helicity after associating with chiral acids. The characteristic split-type ICD suggests the handedness of the helical conformation on the basis of exciton chirality method. Because of the nature of acid-base equilibrium, the magnitude of ICD would increase with the increase of acidity of chiral acid, solvent polarity, and the ratio of chiral acid to P2VP. In addition, the bulkiness of chiral acid was also found to affect the magnitude of ICD significantly. Most interestingly, in contrast to the intense ICD of iP2VP, the sP2VP only gives rather weak ICD, suggesting that the magnitude of ICD is dependent upon isotacticity rather than syndiotacticity. Furthermore, stereoirragular aP2VP gave more intense ICD than that of sP2VP after associating with chiral acid, further demonstrating that isotacticity indeed plays important role for the ICD. As a result, unlike most dynamic helical polymers having conjugated or peptide-based backbones, the formation of helical poly(vinyl pyridine)s with C-C backbones, in particular for iP2VP, could be successfully achieved by using chiral acids because of the isotacticity of P2VPs.


    Abstract I Contents III List of Figures V List of Schemes IX List of Tables X Chapter 1 Introduction 1 1.1 Self-Assembly and Supramolecular Chemistry 1 1.2 Chiral Effect on Self-Assembly 9 1.3 Helical Conformations 14 1.3.1 Static helical polymer 16 1.3.2 Dynamic helical polymer 17 1.4 Miscellaneous Helical Polymers 22 1.4.1 Stereoregular vinyl polymers 22 1.4.2 Conjugated polymers 27 1.5 Induced Chirality 32 Chapter 2 Objectives 35 Chapter 3 Materials and Experimental Details 37 3.1 Materials 37 3.1.1 Synthesis of poly(2-vinyl pyridine)s 37 3.2 Preparation of Polymer Solution 38 3.3 Characterization and Instruments 39 3.3.1 Nuclear magnetic resonance spectroscopy 39 3.3.2 Circular dichroism spectroscopy (CD) 39 3.3.3 Fourier transform infrared spectroscopy (FTIR) 39 Chapter 4 Results and Discussion 40 4.1 Stereoregularity of Poly(2-vinyl pyridine)s 40 4.2 ICD of iP2VP 43 4.3 ICD and Acid-Base Complexation 49 4.3.1 Effect of acidity and bulkiness 49 4.3.2 Effect of solvent polarity 51 4.3.3 Dependence of Concentration 53 4.4 Effect of Stereoregularity on ICD 54 4.5 Hypothetic Mechanism 58 Chapter 5 Conclusions 60 Chapter 6 Future Work 62 Chapter 7 References 64

    [1] Lehn, J. M. Science 1985, 227, 849.
    [2] Whitesides, G. M.; Grzybowski, B. Science, 2002, 295, 2418.
    [3] Whitesides, G. M.; Boncheva, M. Proc. Nat.l Acad. Sc.i USA 2002, 99, 4769.
    [4] Petsko, G. A.; Ringe, D. Protein Structure and Function. London: New Science Press Ltd, 2004. pp. 2-46.
    [5] Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
    [6] Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    [7] Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
    [8] Shen, H.; Eisenberg, A. J. Phys. Chem. B 1999, 103, 9473.
    [9] Discher, D. E.; Eisenberg, A. Science 2002, 297, 967.
    [10] Nakashima, N.; Asakuma, S.; Kunitake, T. J. Am. Chem. Soc. 1985, 107, 509.
    [11] Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1427.
    [12] Malashkevich, V, N.; Kammerer, R. A.; Efimov, V. P.; Schulthess, T.; Engel, J. Science 1996, 274, 761.
    [13] Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L. C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524.
    [14] Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Harris, F. W. Phys Rev Lett 1999, 83, 4558.
    [15] Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Weng, X.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Calhoun, B. H.; Harris, F. W.; Chien, L. C.; Lotz, B. J Am Chem Soc 2001, 123, 2462.
    [16] Fujiki, M. Macromol. Rapid Commun. 2001, 22, 539.
    [17] Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Chem. Rev. 2009, 109, 6102.
    [18] Green, M. M.;Nolte, R. J. M.;Meijer, E.W. Materials-Chirality: Volume 24 of Topics in Stereochemisty. New Jersey: John Wiley & Sons, Inc. Press 2003.
    [19] Farina, M. Top Stereochem. 1987, 17, 1.
    [20] Okamoto, Y.; Nakano, T. Chem. Rev. 1994, 94, 349.
    [21] Wulff, G. Angew. Chem., Int. Ed. Engl. 1989, 28, 21.
    [22] Pu, L. Acta Polym. 1997, 48, 116.
    [23] Rowan, A. E.; Nolte, R. J. M. Angew. Chem., Int. Ed. 1998, 37, 63.
    [24] Nakano, T.; Okamoto, Y. Chem. Rev. 2001, 101, 4013.
    [25] Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001, 101, 4039.
    [26] Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. Science 1995, 268, 1860.
    [27] Maeda, K.; Yashima, E. Top. Curr. Chem. 2006, 265, 47.
    [28] Yashima, E.; Maeda, K. In Foldamers: Structure, Properties, and Applications; Hecht, S., Huc, I., Eds.; Wiley-VCH: Weinheim, 2007.
    [29] Sierra, T. In Chirality at Nanoscale; Amabilino, D., Ed.; Wiley: Weinheim, 2009.
    [30] Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
    [31] Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev. 2001, 101, 3893.
    [32] Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1996, 118, 7529.
    [33] Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J. M. Nature 2000, 407, 720.
    [34] Nolte, R. J. M.; Beijnen, A. J. M. V.; Drenth, W. J. Am. Chem. Soc. 1974, 96, 5932.
    [35] Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R. E.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science, 2001, 293, 676
    [36] Green, M. M.; Park, J. W.; Sato, T.; Teramoto, A.; Lifson, S.; Selinger, R. L. B.; Selinger, J. V. Angew. Chem., Int. Ed. 1999, 38, 3138.
    [37] Jha, S. K.; Cheon, K. S.; Green, M. M.; Selinger, J. V. J Am Chem Soc 1999, 121, 1665.
    [38] Green, M. M.; Reidy, M. P.; Johnson, R. D.; Darling, G.; O’Leary, D. J.; Willson, G. J Am Chem Soc 1989, 111, 6452.
    [39] Green, M. M.; Garetz, B. A.; Munoz, B.; Chang, H. P. J Am Chem Soc 1995, 117, 4181.
    [40] Gu, H.; Nakamura, Y.; Sato, T.; Teramoto, A.; Green, M. M.; Andreola, C.; Peterson, N. C.; Lifson, S. Macromolecules 1995, 28, 1016
    [41] Lifson, S.; Andreola, C.; Peterson, N. C.; Green, M. M. J Am Chem Soc 1989, 111, 8850.
    [42] Selinger, J. V.; Selinger, R. L. B. Phys Rev Lett 1996, 76, 58-61.
    [43] Selinger, J. V.; Selinger, R. L. B. Macromolecules 1998, 31, 2488-92.
    [44] Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708.
    [45] Pino, P.; Ciradelli, F.; Lorenzi, G. Makromol. Chem. 1963, 61, 207.
    [46] Pino, P.; Lorenzi, G. P. J. Am. Chem. Soc. 1960, 82, 4745.
    [47] Pino, P.; Lorenzi, G. P.; Lardicci, L. Chim. Ind. (Milan) 1960, 42, 712.
    [48] Pino, P.; Ciardelli, F.; Motagnoli, G.; Pieroni, O. J. Polym. Sci., Part B: Polym. Lett. 1967, 5, 307.
    [49] Okamoto, Y.; Suzuki, K.; Ohta, K.; Hatada, K.; Yuki, H. J. Am. Chem. Soc. 1979, 101, 4763.
    [50] Kizirian, J.-C. Chem. Rev. 2008, 108, 140
    [51] Oriz, L. J.; Khan, I. M. Macromolecules 1998, 31, 5927.
    [52] Khan, I. M.; Hogen-Esch, T. E. Macromolecules 1987, 20, 2335.
    [53] Mathis, C.; Hogen-Esch, T. E., J. Am Chem. Soc., 1982, 104, 634.
    [54] Habaue, S.; Ajiro, H.; Okamoto, Y. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 4088.
    [55] Moore, J. S.; Gorman, C. B.; Grubbs, R. H. J Am Chem Soc 1991, 113, 1704.
    [56] Percec, V.; Rudick, J. G.; Peterca, M.; Wagner, M.; Obata, M.; Mitchell, C. M.; Cho, W. D.; Balagurusamy, V. S. K.; Heiney, P. A. J Am Chem Soc 2005, 127, 15257.
    [57] Percec, V.; Aqad, E.; Peterca, M.; Rudick, J. G.; Lemon, L.; Ronda, J. C.; De, B. B.; Heiney, P. A.; Meijer, E. W. J Am Chem Soc 2006, 128, 16365.
    [58] Nakako, H.; Mayahara, Y.; Nomura, R.; Tabata, M.; Masuda, T. Macromolecules 2000, 33, 3978.
    [59] Fujiki, M. Top Curr Chem 2008, 284, 119.
    [60] Fujiki, M. J Am Chem Soc 1994, 116, 6017.
    [61] Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793.
    [62] Prince, R. B.; Okada, T.; Moore, J. S. Angew Chem Int Ed 1999, 38, 233.
    [63] Yashima, E.; Maeda, K.; Nishimura, T. Chem Eur J 2004, 10, 42.
    [64] Yashima, E.; Maeda, K.; Furusho, Y. Acc Chem Res 2008, 41, 1166.
    [65] Yashima, E.; Matsushima, T.; Okamoto, Y. J Am Chem Soc 1995, 117, 11596.
    [66] Yashima, E.; Maeda, K. Macromolecules 2008, 41, 3.
    [67] Green, M. M.; Cheon, K. S.; Yang, S. Y.; Park, J. W.; Swansburg, S.; Liu, W. Acc Chem Res 2001, 34, 672.
    [68] Dimov, D. K.; Hogen-Esch, T. E. Macromolecules 1995, 28, 7394
    [69] Barrow, G. M. J. Am. Chem. Soc. 1956, 78, 5802
    [70] Yashima, E.; Matsushima, T.; Okamoto, Y. J Am Chem Soc 1997, 119, 6345.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE