研究生: |
謝 忻 Hsieh, Hsin |
---|---|
論文名稱: |
兩芯多防區之麥克森干涉儀光纖入侵感測系統 Multi-Defense-Zone Michelson-Interferometer Fiber Intrusion Detection System with Two-Core Fiber Cable |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
劉文豐
Liu, Wen-Fung 馮開明 Feng, Kai-Ming |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 光纖感測 、光纖雷射 、麥克森干涉儀 、入侵偵測 |
外文關鍵詞: | fiber sensor, fiber laser, Michelson-Interferometer, intrusion |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用光纖麥克森干涉儀為基礎設計一入侵感測系統,並於干涉儀內架設一線型雷射共振腔,再利用多個DWDM設定波長藉此對應不同之防區,經由入侵引起之相位變化造成干涉,即可偵測入侵訊號。本文使用了四個波長做為四防區,並於戶外測試了光纜貼地、光纜埋地、光纜放置於鐵網及鐵窗等環境下之入侵狀況,利用程式分析各種入侵訊號後判別出不同環境下對應之閾值,再統一測試系統之報警狀況,並同時監控防區間之干擾狀況,以達到最佳之系統判斷。
Fiber laser cavities with Michelson interferometers being used as end reflectors were employed to produce laser power fluctuation when the Michelson interferometers were perturbed. In this research, we built such fiber laser cavities and applied them to intrusion detection for multiple perimeter zone security. Two single-mode fibers were used to implement such a fiber laser cavity with a DWDM bandpass filter to define the perimeter zone. When there is anyone invading the defense zone, the phase of the Michelson interferometer will change and then we can receive the intrusion signal fedback from the corresponding laser cavity. In this thesis, we use four wavelengths for four defense zones and we test our system in four environments including cable on the ground, cable buried in the ground, cable on the iron net, and cable on the window. In order to make the best judgement in determining intrusion, we analyze different intrusion-induced signals, determine threshold by program, simultaneously test the false alarm rate for all the defense-zones, and detect interference between different defense zones.
[1] Gloge, D. (1977). Optical fiber theory: Opportunities for advancement abound. Radio Science, 12(4), 479-490.
[2] Okoshi, T. (1987). Recent advances in coherent optical fiber communication systems. Journal of lightwave technology, 5(1), 44-52.
[3] Saravanos, C., & Lowe, R. S. (1988, August). Characterization techniques of single-mode fibers. In Antenna Technology and Applied Electromagnetics, 1988. ANTEM 1988. Symposium on(pp. 1-6). IEEE.
[4] Patrick, H. J., Williams, G. M., Kersey, A. D., Pedrazzani, J. R., & Vengsarkar, A. M. (1996). Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters, 8(9), 1223-1225.
[5] Park, S. J., Ta, C. L., Baek, H. G., Kim, Y. H., Eom, J. B., Lee, Y. T., & Lee, B. H. (2013, June). Optical fiber sensor for refractive index measurement based on localized surface plasmon resonance. In Conference on Lasers and Electro-Optics/Pacific Rim (p. WPF_20). Optical Society of America.
[6] Mahmud, Z., Herman, S. H., Noor, U. M., & Saharudin, S. (2013, December). Performance characterization of optical fiber oxygen sensor in gas and aqueos phase. In Research and Development (SCOReD), 2013 IEEE Student Conference on (pp. 569-571). IEEE.
[7] Mao, P., Luo, Y., Chen, X., Fang, J., Huang, H., Chen, C., ... & Chen, Z. (2014, September). Design and optimization of multimode fiber sensor based on surface plasmon resonance. In Numerical Simulation of Optoelectronic Devices (NUSOD), 2014 14th International Conference on (pp. 119-120). IEEE.
[8] Villatoro, J., Minkovich, V. P., & Zubia, J. (2015). Photonic crystal fiber interferometric force sensor. IEEE Photonics Technology Letters, 27(11), 1181-1184.
[9] Rao, Y. J. (1997). In-fibre Bragg grating sensors. Measurement science and technology, 8(4), 355.
[10] Liu, W., Li, M., Wang, C., & Yao, J. (2011). Real-time interrogation of a linearly chirped fiber Bragg grating sensor based on chirped pulse compression with improved resolution and signal-to-noise ratio. Journal of Lightwave Technology, 29(9), 1239-1247.
[11] Zhao, L., & Huang, X. (2016, September). Integrated condition monitoring system of transmission lines based on fiber bragg grating sensor. In Condition Monitoring and Diagnosis (CMD), 2016 International Conference on (pp. 667-670). IEEE.
[12] Gold, M. P., & Hartog, A. H. (1983). Ultra-long-range OTDR in single-mode fibres at 1.3 μm. Electronics Letters, 19(13), 463-464.
[13] Zhu, F., Zhang, Y., Xia, L., Wu, X., & Zhang, X. (2015). Improved Φ-OTDR sensing system for high-precision dynamic strain measurement based on ultra-weak fiber Bragg grating array. Journal of Lightwave Technology, 33(23), 4775-4780.
[14] Aktas, M., Akgun, T., Demircin, M. U., & Buyukaydin, D. (2017, April). Deep learning based multi-threat classification for phase-OTDR fiber optic distributed acoustic sensing applications. In Fiber Optic Sensors and Applications XIV (Vol. 10208, p. 102080G). International Society for Optics and Photonics.
[15] Tong, Y., Li, Z., Wang, J., & Zhang, C. (2017, May). Improved distributed optical fiber vibration sensor based on Mach-Zehnder-OTDR. In CLEO: Science and Innovations (pp. JW2A-16). Optical Society of America.
[16] Li, T., Wang, A., Murphy, K., & Claus, R. (1995). White-light scanning fiber Michelson interferometer for absolute position–distance measurement. Optics letters, 20(7), 785-787.
[17] Tian, Z., Yam, S. S., & Loock, H. P. (2008). Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber. Optics letters, 33(10), 1105-1107.
[18] Yuan, L., Yang, J., & Liu, Z. (2008). A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer. IEEE sensors journal, 8(7), 1114-1117.
[19] Lu, P., Men, L., Sooley, K., & Chen, Q. (2009). Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Applied Physics Letters, 94(13), 131110.
[20] Lim, J. H., Jang, H. S., Lee, K. S., Kim, J. C., & Lee, B. H. (2004). Mach–Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings. Optics Letters, 29(4), 346-348.
[21] Blow, K. J., Doran, N. J., & Nayar, B. K. (1989). Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer. Optics letters, 14(14), 754-756.
[22] Dong, X., Tam, H. Y., & Shum, P. (2007). Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Applied Physics Letters, 90(15), 151113.
[23] Krakenes, K., & Blotekjaer, K. (1995). Comparison of fiber-optic Sagnac and Mach-Zehnder interferometers with respect to thermal processes in the fiber. Journal of lightwave technology, 13(4), 682-686.
[24] Kang, K. I., Chang, T. G., Glesk, I., & Prucnal, P. R. (1996). Comparison of Sagnac and Mach–Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity. Applied optics, 35(3), 417-426.
[25] Chtcherbakov, A. A., Swart, P. L., Spammer, S. J., & Lacquet, B. M. (1998, September). Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing. In Fourth Pacific Northwest Fiber Optic Sensor Workshop (Vol. 3489, pp. 60-65). International Society for Optics and Photonics.
[26] Hill, K. O., Fujii, Y., Johnson, D. C., & Kawasaki, B. S. (1978). Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Applied physics letters, 32(10), 647-649.
[27] Brady, D., Hill, K., & Basinger, S. (1993, November). Holographic pulse shaping in organic media. In Lasers and Electro-Optics Society Annual Meeting, 1993. LEOS'93 Conference Proceedings. IEEE (pp. 112-113). IEEE.
[28] Spammer, S. J., Swart, P. L., & Chtcherbakov, A. A. (1997). Merged Sagnac-Michelson interferometer for distributed disturbance detection. Journal of lightwave technology, 15(6), 972-976.
[29] Signorini, A., Faralli, S., Soto, M. A., Sacchi, G., Baronti, F., Barsacchi, R., ... & Di Pasquale, F. (2010, March). 40 km long-range Raman-based distributed temperature sensor with meter-scale spatial resolution. In Optical Fiber Communication Conference (p. OWL2). Optical Society of America.
[30] Zhang, S. M., Lu, F. Y., & Wang, J. (2007). All‐fiber actively Q‐switched Er3+/Yb3+ co‐doped ring laser. Microwave and Optical Technology Letters, 49(9), 2183-2186.
[31] Onstott, J. R., Messerly, M. J., Mikkelson, R. C., & Donalds, L. J. (1990). U.S. Patent No. 4,896,942. Washington, DC: U.S. Patent and Trademark Office.
[32] Hornung, S., Cassidy, S., Yennadhiou, P., & Reeve, M. (1986). The blown fiber cable. IEEE journal on selected areas in communications, 4(5), 679-685.
[33] Kawasaki, B. S., Hill, K. O., & Lamont, R. G. (1981). Biconical-taper single-mode fiber coupler. Optics Letters, 6(7), 327-328.
[34] Georgiou, G., & Boucouvalas, A. C. (1985). Low-loss single-mode optical couplers. IEE Proceedings J (Optoelectronics), 132(5), 297-302.
[35] Mortimore, D. B. (1988). Fiber loop reflectors. Journal of Lightwave Technology, 6(7), 1217-1224.
[36] Ball, G. A., & Glenn, W. H. (1992). Design of a single-mode linear-cavity erbium fiber laser utilizing Bragg reflectors. Journal of Lightwave Technology, 10(10), 1338-1343.
[37] Zhang, M., Chen, L. L., Zhou, C., Cai, Y., Ren, L., & Zhang, Z. G. (2009). Mode-locked ytterbium-doped linear-cavity fiber laser operated at low repetition rate. Laser physics letters, 6(9), 657.
[38] Tamura, K., Ippen, E. P., Haus, H. A., & Nelson, L. E. (1993). 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Optics letters, 18(13), 1080-1082.
[39] Park, N., & Wysocki, P. F. (1996). 24-line multiwavelength operation of erbium-doped fiber-ring laser. IEEE Photonics Technology Letters, 8(11), 1459-1461.
[40] Kersey, A. D., Marrone, M. J., & Davis, M. A. (1991). Polarisation-insensitive fibre optic Michelson interferometer. Electronics letters, 27(6), 518-520.