研究生: |
洪健淋 Hung, Chien-Lin |
---|---|
論文名稱: |
Study of the thermal conductivity for single indium oxide nanowire 氧化銦奈米線熱傳導係數的研究 |
指導教授: |
周立人
Chou, Li-Jen 蔡哲正 Tsai, Cho-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 氧化銦 、奈米線 |
外文關鍵詞: | thermal conductivity, indium oxide, nanowire |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
This thesis is mainly focused on the investigation and analysis of thermal conductivity (κ value) for a single-crystalline indium oxide nanowire (In2O3 NW). With the help of e-beam lithography technique and RIE process, the single In2O3 NW is successfully suspended on the SiO2 substrate; and through 3ω method, the κ value for a single In2O3 NW is measured.
The IV characteristic indicates the electrical resistivity is 5.38 × 10-3 Ω-cm at 300 K, which is the best report owing to the oxygen vacancies formed during the growth process. The κ value appeals a descending trend as temperature rising within 300-375 K; And from the calculation of Wiedemann-Franz law, it is proved that phonon dominates the thermal transport. A post-annealing process above measured temperature is also performed. The κ value becomes larger than the as grown one, and that can be attributed to the reduction of oxygen vacancies after post-annealing process.
本論文主要研究單根單晶結構的氧化銦奈米線之熱傳導係數。藉由電子束微影的技術和反應式離子蝕刻機台的幫助,單根氧化銦奈米線成功地懸掛在二氧化矽的基板上;而熱傳導係數的量測則是藉由(3ω method)所量測。
此單根奈米線的電阻率為5.38 × 10-3 Ω-cm,和之前文獻上的報導相比是最好的,推測是由於合成過程中產生的氧缺陷所致。熱傳導係數的結果顯示,其值會隨著溫度的上升而下降;計算結果指出聲子是此單根奈米線熱傳導的主要載子。對此單根奈米線做了後續退火的實驗發現,其熱傳導係數比原始的結果還要高,這是因為退火後造成電阻上升及缺陷減少所致。
[1] S. Iijima, “Helical Microtube of Graphitic Carbon,” Nature 354, 56-58 (1991)
[2] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and Charles M. Lieber “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885-889 (2007)
[3] G. Chen, and A. Shakouri, “Heat Transfer in Nanostructures for Solid-State Energy Conversion,” J. Heat Transfer 124, 242-252 (2002)
[4] K. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992)
[5] P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-934 (1999)
[6] K. W. Adu, H. R. Gutierrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined Phonon in Si Nanowires,” Nano Lett. 5, 409-414 (2005)
[7] G. Markovich, C. P. Collier, and J. R. Heath, “Architectonic Quantum Dot Solid,” Acc. Chem. Res. 32, 425-423 (1999)
[8] X. Wang, J. Song, J. Liu and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science 316, 102-105 (2007)
[9] R. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead, and C. D. Montemagno, “Powering an Inorganic Nanodevice with a Biomolecular Motor,” Science 290, 1555-1558 (2000)
[10] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B 104, 5213-5216 (2000)
[11] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409, 66-69 (2001)
[12] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science 294, 1313-1317 (2001)
[13] M. Fleischer, J. Giber, and H. Meixner, “H2 Induced Changes in Electrical Conductance of β-Ga2O3 Thin Film System,” Appl. Phys. A 54, 560-566 (1992)
[14] Y. Chi, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science 293, 1289-1292 (2001)
[15] Z. Zeng, K. Wang, Z. Zhang, J. Chen and W. Zhou, “The Detection of H2S at Room Temperature by Using Individual Indium Oxide Nanowire Transistors,” Nanotechnology 20, (2009)
[16] D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhou, “Electronic Transport Studies of Single-Crystalline In2O3 Nanowires”, Appl. Phys. Lett. 82, 112-114 (2003)
[17] P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han, and M. Meyyappan, “Direct Integration of Metal Oxide Nanowire in Vertical Field-Effect Transistor,” Nano Lett. 4, 651-657 (2004)
[18] D, Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C, Zhou, “Ultraviolet Photodetection Properties of Indium Oxide Nanowires,” Appl. Phys. A 77, 163-166 (2003)
[19] B. Lei, C. Li, D. Zhang, Q. F. Zhou, K. K. Shung, and C. Zhou, “Nanowire Transistors with Ferroelectric Gate Dielectrics: Enhanced Performance and Memory Effects,” Appl. Phys. Lett. 82, 4553-4555 (2004)
[20] H.M. Rosenberg, “The Solid State,” Oxford University Press, (1997)
[21] C. Kittel. “Introduction to Solid State Physics, 8th ed.” WILEY, (2005)
[22] Cronin B. Vining, “The Limited Role for Thermoelectrics in the Climate Crisis,” Solutions Summit (2008)
[23] D. G. Cahill, “Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method,” Rev. Sci. Instrum. 64, 802-808 (1990)
[24] B. W. Olson, S. Graham, and K. Chen, “A Practical Extension of 3ω Method to Multilayer Structures,” Rev. Sci. Instrum. 76, 053901 (2005)
[25] L. Lu, W. Yi, and D. L. Zhang, “3ω Method for Specific Heat and Thermal Conductivity Measurements,” Rev. Sci. Instrum. 72, 2996-3003 (2001)
[26] A. I. Boukai, Y. Bunimovich, T. K. Jamil, J. K. Yu, W. A. GoddardⅢ, and J. R. Heath, “Silicon Nanowires as Efficient Thermoelectric Materials,” Nature 451, 168-171 (2008)
[27] D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, “In2O3:Ge, a Promising N-Type Thermoelectric Oxide Composite,” Solid State Commun. 146, 97 (2008)
[28] E. Guilmeau, D. Bérardan, Ch. Simon, A. Maignan, B. Raveau, D. Ovono Ovono, and F. Delorme “Tuning the Transport and Thermoelectric Properties of In2O3 Bulk Ceramics Through Doping at In-Site,” J. Appl. Phys. 106, 053715 (2009)
[29] D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhoua “Electronic Transport Studies of Single-Crystalline In2O3 Nanowires,” Appl. Phys. Lett. 82, (2003)
[30] A.Kar, J. Yang, M. Dutta, M. A. Stroscio, J. Kumari and M. Meyyappan “Rapid Thermal Annealing Effects on Tin Oxide Nanowires Prepared by Vapor-Liquid–Solid Technique,” Nanotechnology 20, 065704 (2009)
[31] R. L. Weiher “Electrical Properties of Single Crystals of Indium Oxide,” J. Appl. Phys. 33, (1962)
[32] H. Nakazawa, Y. Ito, E. Matsumoto, K. Adachi, N. Aoki, and Y. Ochiai “The Electronic Properties of Amorphous and Crystallized In2O3 Films,” J. Appl. Phys. 100, 093706 (2006)