簡易檢索 / 詳目顯示

研究生: 洪健淋
Hung, Chien-Lin
論文名稱: Study of the thermal conductivity for single indium oxide nanowire
氧化銦奈米線熱傳導係數的研究
指導教授: 周立人
Chou, Li-Jen
蔡哲正
Tsai, Cho-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: 氧化銦奈米線
外文關鍵詞: thermal conductivity, indium oxide, nanowire
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis is mainly focused on the investigation and analysis of thermal conductivity (κ value) for a single-crystalline indium oxide nanowire (In2O3 NW). With the help of e-beam lithography technique and RIE process, the single In2O3 NW is successfully suspended on the SiO2 substrate; and through 3ω method, the κ value for a single In2O3 NW is measured.
    The IV characteristic indicates the electrical resistivity is 5.38 × 10-3 Ω-cm at 300 K, which is the best report owing to the oxygen vacancies formed during the growth process. The κ value appeals a descending trend as temperature rising within 300-375 K; And from the calculation of Wiedemann-Franz law, it is proved that phonon dominates the thermal transport. A post-annealing process above measured temperature is also performed. The κ value becomes larger than the as grown one, and that can be attributed to the reduction of oxygen vacancies after post-annealing process.


    本論文主要研究單根單晶結構的氧化銦奈米線之熱傳導係數。藉由電子束微影的技術和反應式離子蝕刻機台的幫助,單根氧化銦奈米線成功地懸掛在二氧化矽的基板上;而熱傳導係數的量測則是藉由(3ω method)所量測。
      此單根奈米線的電阻率為5.38 × 10-3 Ω-cm,和之前文獻上的報導相比是最好的,推測是由於合成過程中產生的氧缺陷所致。熱傳導係數的結果顯示,其值會隨著溫度的上升而下降;計算結果指出聲子是此單根奈米線熱傳導的主要載子。對此單根奈米線做了後續退火的實驗發現,其熱傳導係數比原始的結果還要高,這是因為退火後造成電阻上升及缺陷減少所致。

    Content Content I Acknowledgement III Abstract IV 摘要 V Chapter 1 Introduction 1 1-1 Nanotechnology 1 1-2 Indium Oxide Nanowires (In2O3) 3 1-2-1 One-Dimension Nanomaterials 3 1-2-2 Properties of Indium Oxide Nanowires 4 1-3 Background Research 6 1-3-1 Thermal Conductivity 6 1-3-2 Thermoelectricity 9 1-3-3 Three Omega (3ω) Method 15 1-4 Motivation and Research Directions 18 Chapter 2 Experimental Procedures 20 2-1 Synthesis of Indium Oxide Nanowires 20 2-2 Nanodevice Fabrication 22 Chip Cleaning 24 Sample Preparation 26 Locate Nanowires and Pattern Design 26 Photoresist Spin Coating and Soft Baking 27 Electron Beam Lithography 27 Development 28 Thermal Evaporation 28 Lift-Off Process 28 Device Evaluation 29 Etching process for the Si3N4 film 29 2-3 IV Measurement 30 2-4 Thermal Transport Measurement 31 Chapter 3 Result and Discussion 33 3-1 Result #1 33 3-1-1 Electrical properties 33 3-1-2 Thermal properties 37 3-2 Result #2 47 3-2-1 Electrical properties 47 3-2-2 Thermal properties 50 Chapter 4 Summary and Conclusions 53 References 54

    [1] S. Iijima, “Helical Microtube of Graphitic Carbon,” Nature 354, 56-58 (1991)
    [2] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and Charles M. Lieber “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885-889 (2007)
    [3] G. Chen, and A. Shakouri, “Heat Transfer in Nanostructures for Solid-State Energy Conversion,” J. Heat Transfer 124, 242-252 (2002)
    [4] K. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992)
    [5] P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-934 (1999)
    [6] K. W. Adu, H. R. Gutierrez, U. J. Kim, G. U. Sumanasekera, and P. C. Eklund, “Confined Phonon in Si Nanowires,” Nano Lett. 5, 409-414 (2005)
    [7] G. Markovich, C. P. Collier, and J. R. Heath, “Architectonic Quantum Dot Solid,” Acc. Chem. Res. 32, 425-423 (1999)
    [8] X. Wang, J. Song, J. Liu and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves,” Science 316, 102-105 (2007)
    [9] R. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead, and C. D. Montemagno, “Powering an Inorganic Nanodevice with a Biomolecular Motor,” Science 290, 1555-1558 (2000)
    [10] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires,” J. Phys. Chem. B 104, 5213-5216 (2000)
    [11] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature 409, 66-69 (2001)
    [12] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science 294, 1313-1317 (2001)
    [13] M. Fleischer, J. Giber, and H. Meixner, “H2 Induced Changes in Electrical Conductance of β-Ga2O3 Thin Film System,” Appl. Phys. A 54, 560-566 (1992)
    [14] Y. Chi, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science 293, 1289-1292 (2001)
    [15] Z. Zeng, K. Wang, Z. Zhang, J. Chen and W. Zhou, “The Detection of H2S at Room Temperature by Using Individual Indium Oxide Nanowire Transistors,” Nanotechnology 20, (2009)
    [16] D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhou, “Electronic Transport Studies of Single-Crystalline In2O3 Nanowires”, Appl. Phys. Lett. 82, 112-114 (2003)
    [17] P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han, and M. Meyyappan, “Direct Integration of Metal Oxide Nanowire in Vertical Field-Effect Transistor,” Nano Lett. 4, 651-657 (2004)
    [18] D, Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C, Zhou, “Ultraviolet Photodetection Properties of Indium Oxide Nanowires,” Appl. Phys. A 77, 163-166 (2003)
    [19] B. Lei, C. Li, D. Zhang, Q. F. Zhou, K. K. Shung, and C. Zhou, “Nanowire Transistors with Ferroelectric Gate Dielectrics: Enhanced Performance and Memory Effects,” Appl. Phys. Lett. 82, 4553-4555 (2004)
    [20] H.M. Rosenberg, “The Solid State,” Oxford University Press, (1997)
    [21] C. Kittel. “Introduction to Solid State Physics, 8th ed.” WILEY, (2005)
    [22] Cronin B. Vining, “The Limited Role for Thermoelectrics in the Climate Crisis,” Solutions Summit (2008)
    [23] D. G. Cahill, “Thermal Conductivity Measurement from 30 to 750 K: The 3ω Method,” Rev. Sci. Instrum. 64, 802-808 (1990)
    [24] B. W. Olson, S. Graham, and K. Chen, “A Practical Extension of 3ω Method to Multilayer Structures,” Rev. Sci. Instrum. 76, 053901 (2005)
    [25] L. Lu, W. Yi, and D. L. Zhang, “3ω Method for Specific Heat and Thermal Conductivity Measurements,” Rev. Sci. Instrum. 72, 2996-3003 (2001)
    [26] A. I. Boukai, Y. Bunimovich, T. K. Jamil, J. K. Yu, W. A. GoddardⅢ, and J. R. Heath, “Silicon Nanowires as Efficient Thermoelectric Materials,” Nature 451, 168-171 (2008)
    [27] D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, “In2O3:Ge, a Promising N-Type Thermoelectric Oxide Composite,” Solid State Commun. 146, 97 (2008)
    [28] E. Guilmeau, D. Bérardan, Ch. Simon, A. Maignan, B. Raveau, D. Ovono Ovono, and F. Delorme “Tuning the Transport and Thermoelectric Properties of In2O3 Bulk Ceramics Through Doping at In-Site,” J. Appl. Phys. 106, 053715 (2009)
    [29] D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhoua “Electronic Transport Studies of Single-Crystalline In2O3 Nanowires,” Appl. Phys. Lett. 82, (2003)
    [30] A.Kar, J. Yang, M. Dutta, M. A. Stroscio, J. Kumari and M. Meyyappan “Rapid Thermal Annealing Effects on Tin Oxide Nanowires Prepared by Vapor-Liquid–Solid Technique,” Nanotechnology 20, 065704 (2009)
    [31] R. L. Weiher “Electrical Properties of Single Crystals of Indium Oxide,” J. Appl. Phys. 33, (1962)
    [32] H. Nakazawa, Y. Ito, E. Matsumoto, K. Adachi, N. Aoki, and Y. Ochiai “The Electronic Properties of Amorphous and Crystallized In2O3 Films,” J. Appl. Phys. 100, 093706 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE