研究生: |
許瑞宇 Hsu, Jui-Yu |
---|---|
論文名稱: |
具聯網功能之電動機車永磁同步馬達驅動系統 AN ELECTRIC SCOOTER PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE WITH GRID CONNECTED FUNCTION |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
趙貴祥
Chao, Kuei-Hsiang 曾萬存 Tseng, Wan-Tsun |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | 電動車 、電動機車 、表貼式永磁同步馬達 、速度控制 、轉矩控制 、蓄電池 、超電容 、CLLC諧振轉換器 、切換式整流器 、功因校正 、變頻器 、電網至車輛 |
外文關鍵詞: | EV, E-scooter, SPMSM, speed control, torque control, battery, SC, CLLC resonant converter, SMR, PFC, inverter, G2V |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一具聯網功能之電動機車(E-scooter)永磁同步馬達驅動系統。蓄電池及超電容分別經過一雙向直流對直流單臂介面轉換器連接至馬達驅動系統之直流鏈。其建立之可升壓及變動直流鏈電壓能提升馬達在廣速度範圍下之驅動性能。此外,功率型儲能超電容可協助蓄電池之快充/快放操作。所提之電流管理策略使蓄電池與超電容電流可被平順地分配以促進混合能源轉換效能。
首先設計實現固定直流鏈電壓供電之表面貼式永磁同步馬達驅動系統。適當處理之事務有:(一) 必備之轉子位置與電樞電流感測機構;(二) 變頻器換相移位機構;(三) 空間向量調變切換機構;及(四) 電流控制機構。至於外部運動控制機構,所採速度及轉矩控制器均妥善設計。另外,所備裝在直流鏈之動態剎車臂,可避免再生剎車失效所致之直流鏈過壓。
接著建構蓄電池與超電容功率級,包含雙向直流對直流轉換器、動態模式與其控制機構,兩儲能源之協調控制亦予以設計。並以一些實測結果,評定所建變動直流鏈電壓蓄電池/超電容混合供電電動摩托車馬達驅動系統之操作特性。
在閒置模式下,實行電網至電動車之隔離充電操作。電力電路包含一以馬達驅動系統既有元件建構之單相升壓切換式整流器、一隔離半橋式CLLC諧振轉換器、蓄電池及其介面轉換器。達成具有電氣隔離及功率因數校正功能之良好充電性能。
This thesis develops an electric scooter (E-scooter) permanent-magnet synchronous motor (PMSM) drive with grid connected function. Both the battery and SC are connected to the motor drive DC-link through a bidirectional DC-DC one-leg interface converter, respectively. The boosted and variable DC-link voltage can be established to improve the motor driving performance over wide speed range. In addition, the power type energy storage device, SC, can assist the battery in quick discharging/charging operations. With the proposed current management strategy, the currents of the battery and the SC can be smoothly distributed to improve the hybrid energy conversion performance.
First, the fixed DC-link voltage fed surface-mounted PMSM (SPMSM) drive is designed and implemented. The properly treated affairs include: (i) necessary rotor position and armature current sensing schemes; (ii) inverter commutation scheme; (iii) space-vector pulse-width modulation (SVPWM) switching scheme; and (iv) current control scheme. As to the outer motion control schemes, both the speed and torque control modes are arranged with their properly designed controllers. Additionally, a dynamic brake leg is added at the DC-link to prevent the over-voltage due to the maloperation of regenerative braking.
Next, the battery and SC power stages are constructed, including their bidirectional DC-DC converters, dynamic modeling and control schemes. The coordinated control for the two energy storage devices is made. And the battery/SC powered E-scooter motor drive with varied voltage DC-link is evaluated experimentally.
Finally in idle mode, the isolated grid-to-vehicle (G2V) charging operation is performed. The power circuit includes a single-phase boost switch-mode rectifier (SMR) formed by the embedded components of the SPMSM drive, an isolated half-bridge CLLC (HBCLLC) resonant converter, and the battery with its interface converter. Good charging performance with isolation and power factor correct (PFC) function from the mains is achieved.
[1] EERE, “77%-82% of Energy Put into an Electric Car is Used to Move the Car Down the Road,” FOTW #1045, Sept. 3, 2018. [Online]. Available: https://www.energy.gov/eere/ vehicles/articles/fotw-1045-september.-3-2018-77-82-energy-put-electric-car-used-move-car-down. [Accessed: Dec. 2, 2021]
[2] EERE, “12-30% of Energy Put into a Conventional Car is Used to Move the Car Down the Road,” EERE., FOTW #1044, Aug. 27, 2018. [Online]. Available: https://www.energy.gov/ eere/vehicles/articles/fotw-1044-august-27-2018-12-30-energy-put-conventional-car-used-move-car-down. [Accessed: Dec. 2, 2021]
[3] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, 2010.
[4] D. K. Ngo, H. N. Thai, and V. T. Trung, “Performance comparison of reluctance-based synchronous motors consider for electric scooter,” in Proc. IEEE ISEE, 2021, pp. 249-252.
[5] W. Wang, X. Chen, and J. Wang, “Motor/generator applications in electrified vehicle chassis-a survey,” IEEE Trans. Transport. Electrific., vol. 5, no. 3, pp. 584-601, 2019.
[6] A. Siadatan, M. K. Adab, and H. Kashian, “Compare motors of Toyota Prius and synchronous reluctance for using in electric vehicle and hybrid electric vehicle,” in Proc. IEEE EPEC, 2017, pp. 1-6.
[7] J. de Santiago, H. Bernhoff, B. Ekergård, S. Eriksson, S. Ferhatovic, R. Waters, and M. Leijon, “Electrical motor drivelines in commercial all-electric vehicles: a review,” IEEE Trans. Veh. Technol., vol. 61, no. 2, pp. 475-484, 2012.
[8] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transp. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[9] P. C. Krause, O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of electric machinery and drive systems, 3rd Ed., Somerset: Wiley, 2013.
[10] P. C. Sen, Principles of electric machines and power electronics, 3rd Ed., Hoboken, New Jersey: John Wiley and Sons, Inc., 2014
[11] K. M. Rahman and S. Hiti, “Identification of machine parameters of a synchronous motor,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 557-565, 2005.
[12] M. Kondo, “Parameter measurements for permanent-magnet synchronous machines,” IEEJ Trans. Elec. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
[13] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, Oct. 1998.
[14] G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors - a survey,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 744-757, Aug. 2004.
[15] S. C. Yang, Y. L. Hsu, P. H. Chou, J. Y. Chen, and G. R. Chen, “Digital implementation issues on high speed permanent magnet machine FOC drive under insufficient sample frequency,” IEEE Access, vol. 7, pp. 61484-61493, 2019.
[16] Y. Tang, W. Xu, Y. Liu, and D. Dong, “Dynamic performance enhancement method based on improved model reference adaptive system for SPMSM sensorless drives,” IEEE Access, vol. 9, pp. 135012-135023, 2021.
[17] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[18] C. Yu, J. Tamura, and R. D. Lorenz, “Optimum DC bus voltage analysis and calculation method for inverters/motors with variable DC bus voltage,” IEEE Trans. Ind. Appl. vol. 49, no. 6, pp. 2619-2627, Nov.-Dec. 2013.
[19] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4493-4504, 2016.
[20] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, Jan. 1999.
[21] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, Jun. 2007.
[22] V. Michal, “Three-level PWM floating H-bridge sinewave power inverter for high-voltage and high-efficiency applications,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4065- 4074, 2015.
[23] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 171-180, Jan. 1992.
[24] S. M. Tayebi, H. Hu, and I. Batarseh, “Advanced DC-Link voltage regulation and capacitor optimization for three-phase microinverters,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 307-317, Jan. 2019.
[25] J. Guo, J. Ye, and A. Emadi, “DC-link current and voltage ripple analysis considering antiparallel diode reverse recovery in voltage source inverters,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 5171-5180, Jun. 2018.
[26] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[27] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics - lead Acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim, 2015, pp. 444-450.
[28] M. Matsunaga, T. Fukushima, and K. Ojima, “Powertrain system of Honda FCX Clarity fuel cell vehicle,’’ World Electric Vehicle Journal, vol. 3, 2009.
[29] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, Jun. 2008.
[30] S. T. Hung, D. C. Hopkins, and C. R. Mosling, “Extension of battery life via charge equalization control,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 96-104, Feb. 1993.
[31] P. J. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “The ultracapacitor-based regenerative controlled electric drives with power-smoothing capability,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4511-4522, Dec. 2012.
[32] Y. Fukushima, M. Fukuma, M. Hirose, K. Sugiyama, M. Kawami, K. Yoshino, S. Kishida, and S. S. Lee, “Application of electric double layer capacitor and water level sensor to rice field monitoring system,” in Proc. IEEE SENSORS, 2018, pp. 1-4.
[33] Y. Parvini, J. B. Siegel, A. G. Stefanopoulou, and A. Vahidi, “Supercapacitor electrical and thermal modeling, identification, and validation for a wide range of temperature and power applications,” IEEE Trans. Ind. Electron., vol. 63, no. 3, pp. 1574-1585, Mar. 2016.
[34] M. Corley, J. Locker, S. Dutton, and R. Spee, “Ultracapacitor-based ride-through system for adjustable speed drives,” in Proc. IEEE PESCR, 1999, pp. 26-31.
[35] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, 2017.
[36] H. H. Eldeeb, A. T. Elsayed, C. R. Lashway, and O. Mohammed, “Hybrid energy storage sizing and power splitting optimization for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2252-2262, May-Jun. 2019.
[37] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, pp. 806-820, Apr. 2007.
[38] M. A. Abd Rahman and M. Khairil Rahmat, “Performance review on small-medium scales energy storage system in term of investment aspect,” in Proc. IEEE PEC, 2018, pp. 394- 398.
[39] M. Evzelman, M. M. Ur Rehman, K. Hathaway, R. Zane, D. Costinett, and D. Maksimovic, “Active balancing system for electric vehicles with incorporated low-voltage bus,” IEEE Trans. Power Electron. vol. 31, no. 11, pp. 7887-7895, Nov. 2016.
[40] M. K. Kazimierczuk, Pulse-width modulated DC-DC power converters, 2nd Ed., Newark, New Jersey: Wiley, 2015.
[41] L. Corradini, D. Maksimovic, P. Mattavelli, and R. Zane, Digital control of high-frequency switched-mode power converters, 1st Ed., Hoboken, New Jersey: John Wiley & Sons, Inc., Jul. 13, 2015.
[42] G. W. Wester and R. D. Middlebrook, “Low-frequency characterization of switched DC-to-DC converters”, in Proc. IEEE PPESC, May 22-23, 1972.
[43] R. D. Middlebrook, “Topics in multiple-Loop regulators and current-mode programming,” IEEE Trans. Power Electron., vol. 2, no. 2, pp. 109-124, Apr. 1987.
[44] R. Ahmadi, D. Paschedag, and M. Ferdowsi, “Closed-loop input and output impedances of DC-DC switching converters operating in voltage and current mode control,” in Proc. IEEE IES, 2010, pp. 2311-2316.
[45] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer and M. Badawy, “Performance analysis of bidirectional DC–DC Converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, Jul.-Aug. 2015.
[46] A. Ayachit and M. K. Kazimierczuk, “Averaged small-signal model of PWM DC-DC converters in CCM including switching power loss,” IEEE Trans. Circuits Syst., II, Exp. Briefs, vol. 66, no. 2, pp. 262-266, Feb. 2019.
[47] D. Czarkowski and M. K. Kazimierczuk, “Energy-conservation approach to modeling PWM DC-DC converters,” IEEE Trans. Aerosp. Electron. Syst., vol. 29, no. 3, pp. 1059- 1063, Jul. 1993.
[48] A. Reatti, F. Corti, A. Tesi, A. Torlai, and M. K. Kazimierczuk, “Effect of parasitic components on dynamic performance of power stages of DC-DC PWM buck and boost converters in CCM,” in Proc. IEEE ISCAS, 2019, pp. 1-5.
[49] B. Bryant and M. K. Kazimierczuk, “Open-loop power-stage transfer functions relevant to current-mode control of boost PWM converter operating in CCM,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 10, pp. 2158-2164, Oct. 2005.
[50] M. S. M. Sarif, T. X. Pei, and A. Z. Annuar, “Modeling, design and control of bidirectional DC-DC converter using state-space average model,” in Proc. IEEE ISCAIE, 2018, pp. 416- 421.
[51] M. K. Kazimierczuk and A. J. Edstrom, “Open-loop peak voltage feedforward control of PWM buck converter,” IEEE Trans. Circuits Syst. I. Fundam. Theory Appl., vol. 47, no. 5, pp. 740-746, May 2000.
[52] T. Hegarty, “Voltage-mode control and compensation: intricacies for buck regulators,”EDN, 30 Jun., 2008. [Online]. Available: https://www.edn.com/voltage-mode-control-and-compensation-intricacies-for-buck-regulators/. [Accessed: Nov. 13, 2021]
[53] M. Yilmaz and P. T. Krein, “Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles,” in Proc. IEEE IEVC, 2012, pp. 1-8.
[54] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[55] A. Bahrami, “EV charging definitions, modes, levels, communication protocols and applied standards,” Ver. 1.2, Tech. Report, Jan. 2020.
[56] S. Habib, M. M. Khan, F. Abbas, L. Sang, M. U. Shahid, and H. Tang, “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles,” IEEE Access, vol. 6, pp. 13866-13890, 2018.
[57] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[58] A. Khaligh and S. Dusmez, “Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles,” IEEE Trans. Veh. Technol., vol. 61, no. 8, pp. 3475-3489, Oct. 2012.
[59] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-In electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[60] K. Fahem, D. E. Chariag, and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. IEEE GECS, 2017, pp. 1-6.
[61] G. Su, “Comparison of Si, SiC, and GaN based isolation converters for onboard charger applications,” in Proc. IEEE ECCE, 2018, pp. 1233-1239.
[62] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, Jun. 2015.
[63] H. Y. Kanaan and K. Al-Haddad, “Modeling techniques applied to switch-mode power converters: application to the boost-type single-phase full-bridge rectifier,” in Proc. IEEE CHSI, 2008, pp. 979-983.
[64] N. Mohan, Power electronics: a first course, Hoboken, New Jersey: Wiley, 2012.
[65] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[66] B. Singh, S. Singh, A. Chandra, and K. Al-Haddad, “Comprehensive study of single-phase AC-DC power factor corrected converters with high-frequency isolation,” IEEE Trans. Ind. Informat., vol. 7, no. 4, pp. 540-556, Nov. 2011.
[67] Y. Cho and J. Lai, “Digital plug-in repetitive controller for single-phase bridgeless PFC converters,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 165-175, Jan. 2013.
[68] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche, and J. A. Melkebeek, “Duty-ratio feedforward for digitally controlled boost PFC converters,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 108-115, Feb. 2005.
[69] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[70] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, Mar. 2017.
[71] F. Krismer, J. Biela, and J. W. Kolar, “A comparative evaluation of isolated bi-directional DC/DC converters with wide input and output voltage range,” in Proc. IEEE IAC, 2005., 2005, pp. 599-606 Vol. 1.
[72] B. Zhao, Q. Song, W. Liu, and Y. Sun, “Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4091-4106, Aug. 2014.
[73] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman, and O. Trescases, “Active saturation mitigation in high-density dual-active-bridge DC-DC converter for on- board EV charger applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4376- 4387, Apr. 2020.
[74] F. Krismer and J. W. Kolar, “Efficiency-optimized high-current dual active bridge converter for automotive applications,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2745-2760, Jul. 2012.
[75] P. He, “High-frequency bidirectional DC-DC converters for electric vehicle applications,” Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of Maryland, College Park, Md., 2018.
[76] J. Jung, H. Kim, M. Ryu, and J. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, Apr. 2013.
[77] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-In electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998-1005, Mar.-Apr. 2018.
[78] A. Sankar, A. Mallik, and A. Khaligh, “Extended harmonics based phase tracking for synchronous rectification in CLLC converters,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6592-6603, Aug. 2019.
[79] W. Hua, H. Wu, Z. Yu, Y. Xing, and K. Sun, “A phase-shift modulation strategy for a bidirectional CLLC resonant converter,” in Proc. IEEE ECCE, 2019, pp. 1-6.
[80] Texas Instruments Inc., “TMS320F2837xD Dual-Core Microcontrollers,” TMS320F28379D datasheet, Dec. 2013 [Revised Feb., 2021].
[81] Texas Instruments Inc., “TMS320F2837xD Dual-Core Microcontrollers Technical Reference Manual,” Dec., 2013 [Revised Sept., 2019].
[82] T. M. Hsieh, “A switched-reluctance motor drive with hybrid energy storage support and comparative evaluation,” M. S. Thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2021.
[83] H. C. Miao, “A varied voltage DC-link EV PMSM drive with bidirectional grid-connected capability,” M. S. Thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2021.
[84] W. Q. Huang, “Grid-connected electric vehicle induction motor drive system,” M. S. Thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., Hsinchu, 2021.
[85] Hestia Power Inc., “H1M065F050 silicon carbide MOSFET N-channel enhancement mode,” H1M065F050 datasheet, Rev. 2.2, Sept., 2020.
[86] Hestia Power Inc., “H3D065E040,” H3D065E040 datasheet, Rev. 0.2, Oct., 2021.
[87] “Dual 12-Bit Rail-to-Rail Micropower DACs in SO-8,” LTC1446, Rev. A, Linear Technology, 1996. [Online]. Available: https://www.analog.com/media/en/technical- documentation/data-sheets/1446fa.pdf. [Accessed: Jul. 20, 2021]
[88] Advanced Micro Devices Inc., “Am26LS34 Quad Differential Line Receiver,” AM26LS34PC datasheet, Rev. B, May, 1991.
[89] “Low Cost, Miniature Isolation Amplifiers,” AD202, Rev. D, Analog Devices Inc., 2002, [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/AD202_204.pdf. [Accessed: Jul. 20, 2021]
[90] “Ultralow Offset Voltage Operational Amplifier,” OP07, Rev. G, Analog Devices Inc.,2002-2011. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/op07.pdf. [Accessed: Jul. 20, 2021]
[91] “Current Transducer HAS 100-S/SP105,” HAS 100-S, Ver. 0, LEM, 03 Aug., 2016. [Online]. Available: https://www.lem.com/sites/default/files/products_datasheets/has_100-s_sp105.pdf. [Accessed: Jul. 20, 2021]
[92] Texas Instruments Inc., “L07xx Low-Noise FET-Input Operational Amplifiers,” TL072 datasheet, Rev. T, Sept. 1978 [Revised Dec., 2021].
[93] “15W 1”x1” Package DC-DC Regulated Converter SKMW15 & DKMW15 series,” DKMW15G-15, Mean Well Enterprises Co., Ltd., 04 Aug., 2020. [Online]. Available: https://www.meanwell.com/webapp/product/search.aspx?prod=DKMW15. [Accessed: Jul. 20, 2021]
[94] “HCPL-3180,” HCPL-3180, Avago Technologies, 10 Mar., 2009. [Online]. Available: https://docs.broadcom.com/doc/AV02-0165EN. [Accessed: Jul. 20, 2021]
[95] Pihsiang Energy Technology Co., Ltd., “PHET Lithium Iron Phosphate (LiFePO4) Secondary Cell Specification Product Model: IFR13N0-EP1500,” IFR13N0-EP1500 datasheet, Ver. 5.6, 13 Sept., 2019.
[96] Hestia Power Inc., “H1M065F020 silicon carbide MOSFET N-channel enhancement mode,” H1M065F020 datasheet, Rev. 2.1, Sept., 2020.
[97] Maxwell Technologies Inc., “16V SMALL CELL MODULE,” BMOD0058 E016 B02 datasheet, Document number: 1015371.6, 2014.
[98] Cosmo Ferrites Ltd., “Product Data Sheet Core-EE5525,” EE5525 datasheet, 2022. [Online]. Available: https://www.cosmoferrites.com/product-size/e-cores/ee5525. [Accessed: Jul. 20, 2021]