簡易檢索 / 詳目顯示

研究生: 陳其威
論文名稱: 新122-層狀銥鈀摻雜鍺鍶化合物系統與 11-層狀銥鈀摻雜鍺化合物系統之超導性變化
Variation of superconductivity in the new 122-layer system Sr(Ir1-xPdx)2Ge2 and 11-layer system (Ir1-xPdx)Ge
指導教授: 古煥球
口試委員: 戴明鳳
徐永源
游元鵬
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 43
中文關鍵詞: 超導體122-層狀系統鍺化合物
外文關鍵詞: superconductivity, 122-layer, germanide
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    新122-層狀化合物SrIr2Ge2具有BaFe2As2之體心四方晶系結構(空間群I4/mmm),其觀察到超導相轉變之最高溫度Tc為5.2 K,此溫度比同結構SrPd2Ge2的3.2 K高,卻比不穩定SrPt2Ge2的10.2 K低 [1]。由於在體心四方晶系結構中部分的Ir/Ge是無序的與非超導122-單斜相(空間群P21, a < b, β > 90o)的出現,使得準三元化合物Sr(Ir1-xPdx)2Ge2系統的Tc變化是複雜的。相轉變溫度從SrIr2Ge2的5.2 K平穩地降到2.8 K 於x = 0.6,並漸漸地增加到3.2 K於SrPd2Ge2。另外,11-正交晶系中層狀結構(Ir1-xPdx)Ge系統(空間群Pnma),相轉變溫度從IrGe的4.8 K,降至4K與x = 0.1,最後低於2 K在x大於0.5時;而根據文獻,PdGe之超導相轉變溫度低於0.35 K [2]。在有序的層狀化合物SrIr2Ge2高Tc是來自於沿c軸的正四面體IrGe4產生的晶格場擠壓與122-體心四方晶系的準二維層狀Ir-Ge-Ir層5dxz,yz-4p-5dxz,yz耦合與自旋軌道交互作用。


    Abstract
    Superconductivity with a maximum Tc of 5.2 K was observed in the new 122-layer compound SrIr2Ge2 with the BaFe2As2-type body-centered-tetragonal (bct) structure (space group I4/mmm). Tc of 5.2 K is higher than the reported 3.2 K 122-bct SrPd2Ge2, but is lower than 10.2 K for the metastable bct SrPt2Ge2 [1]. For the pseudoternary Sr(Ir1-xPdx)2Ge2 system, variation of Tc is complicated by a partial Ir/Ge disorder in bct phase as well as the appearance of a non-superconducting 122-monoclinic phase (space group P21, a < b, β > 90o). Tc decrease steadily from 5.2 K in SrIr2Ge2, to a minimum of 2.8 K for x = 0.6, and then increases steadily to 3.2 K for SrPd2Ge2. For the 11-orthorhombic layer system (Ir1-xPdx)Ge (space group Pnma), Tc decreases from 4.8 K for IrGe to 4 K for x = 0.1 and below 2 K for x > 0.5, with no Tc reported down to 0.35 K for PdGe [2]. High Tc in the ordered SrIr2Ge2 layer compound is due to a strong quasi-2D 5dxz,yz-4p-5dxz,yz hybridization in the Ir-Ge-Ir layer with the squeezed-along-c-axis IrGe4 tetrahedral crystal field and Ir-5d spin-orbital interaction and is another example of multi-band (dxz/dyz/dxy) non-conventional s-wave superconductor.

    中文摘要 Abstract Contents Acknowledgements List of Figure and Tables Chapter 1. Introduction Chapter 2 Experimental Details Chapter 3. Results and Discussion Chapter 4. Conclusion Reference Appendix

    [1] I. A. Chen, C. H. Huang, C. W. Chen, Y. B. You, M. F. Tai, H. C. Ku and Y. Y. Hsu, J. Appl. Phys. 113, 213902 (2013).
    [2] B. T. Matthias, T. H. Geballe, and V. B. Compton, Rev. Modern Phys. 35, 1 (1963), and references cited therein.
    [3] H. K. Onnes, "The resistance of pure mercury at helium temperatures", Commun. Phys. Lab. Univ. Leiden 12, 120 (1911).
    [4] W. Meissner and R. Ochsenfeld, Naturwissenschaften 21, 787 (1933).
    [5] F. London and H. London, "The Electromagnetic Equations of the Supraconductor". Proceedings of the Royal Society of London A 149, 71 (1935).
    [6] E. Maxwell, "Isotope Effect in the Superconductivity of Mercury". Physical Review 78, 477 (1950).
    [7] C. A. Reynolds, B. Serin, W. H. Wright, and L. B. Nesbitt, "Superconductivity of Isotopes of Mercury", Physical Review 78, 487 (1950).
    [8] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. "Theory of Superconductivity". Physical Review 108, 1175 (1957).
    [9] "Newly discovered fundamental state of matter, a superinsulator, has been created." Science Daily, April 9, (2008).
    [10] Dirk van Delft and Peter Kes, Phys. Today, September, 38 (2010).
    [11] Materialscientist "Properties, History, Applications and Challenges" (2011). <http://www.ccas-web.org/superconductivity/#image1>
    [12] J. S. Zhou and J. B. Goodenough, Phys. Rev. B 56, 6288(1997).
    [13] J.G. Bedonrz and K.A. Muller, Z. Phys. B 64, 189 (1986).
    [14] Antti Hakola. "HTS Material YBCO" Oct 11. (2008). <http://tfy.tkk.fi/aes/AES/projects/prlaser/material.htm>
    [15] S. S. Bhagwat, A. R. Bhangale, J. M. Patil, and V. S. Shirodkar, Brazilian Journal of Physics 30, 541 (2000).
    [16] Sung-Ik Lee, Sergey Lee, Mi-Ock Mun, and Myoung-Kwang Bae, Physica C 235, 895. (1994).
    [17] Yoichi Kamihara, Takumi Watanabe, Masahiro Hirano, and Hideo Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
    [18] C. Y. Liang, R. C. Che, H. X. Yang, H. F. Tian, R. J. Xiao, J. B. Lu, R. Li, and J. Q. Li, Supercond. Sci. Technol. 20, 687 (2007).
    [19] Marianne Rotter, Marcus Tegel, and Dirk Johrendt, Phys. Rev. Lett. 101, 107006 (2008).
    [20] Kalyan Sasmal, Bing Lv, Bernd Lorenz, Arnold M. Guloy, Feng Chen, Yu-Yi Xue, and Ching-Wu Chu, Phys. Rev. Lett. 101, 107007 (2008).
    [21] Athena S. Sefat, Rongying Jin, Micheal A. McGuire, Brian C. Sales, David J. Singh, and David Mandrus, Phys. Rev. Lett. 101, 117004 (2008).
    [22] R. Shein A. L. Ivanovskii, Physica B 405, 3213 (2010).
    [23] T. M. Chuang al, M. P. Allan, Jinho Lee, Yang Xie, Ni Ni, S. L. Bud’ko, G. S. Beobinger, P.C. Canfield, and J. C. Davis, Science 327, 181 (2010).
    [24] C. D. Yang, H. C. Hsu, W. Y. Tseng, H. C. Chen, H. C. Ku, M. N. Ou, Y. Y. Chen, and Y. Y. Hsu, J. Phys. Conf. Ser. 273, 012089 (2011).
    [25] H. C. Ku, J. W. Wang, I. A. Chen, Y. B. You, Y. Y. Hsu, J. Phys. Conf. Ser. 391, 012131 (2012).
    [26] J. W. Wang, I. A. Chen, T. L. Hung, Y. B. You, and H. C. Ku, Phys. Rev. B 85, 024538 (2012).
    [27] T. L. Hung, I. A. Chen, C. H. Huang, C. Y. Lin, C. W. Chen, Y. B. You, H. C. Ku, S. T. Jian, M. C. Yang, Y. Y. Hsu, Y. Y. Chen, and J. C. Ho, J. Low Temp. Phys. 171, 148 (2013).
    [28] H. C. Ku, I. A. Chen, C. H. Huang, C. W. Chen, Y. B. You, M. F. Tai, and Y. Y. Hsu, Physic C, in press (2013) (published online 4/8/2013).
    [29] H. Fujii and A. Sato, Phys. Rev. B 79, 224522 (2009).
    [30] H. Fujii and A. Sato, J. Alloys Compd. 487, 198 (2009).
    [31] G.Venturini, B. Malaman, and B. Roques, J. Less-Common Met. 146, 271 (1989).
    [32] S. Rundqvist and G. Hagg, Acta Chem. Scan. 16, 287 (1962).
    [33] Diamond - crystal and molecular structure visualization, Crystal Impact - K. Brandenburg & H. Putz GbR, Rathausgasse 30, D-53111 Bonn.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE