研究生: |
陳泓元 Chen, Hung-Yuan |
---|---|
論文名稱: |
探討標準CMOS製程實現冷卻電路控制之單光子崩潰電晶體之可行性 Research on the Feasibility of Single-Photon Avalanche Transistor Controlled by Quenching Circuit in Standard CMOS Technology |
指導教授: |
徐永珍
Hsu, Klaus Yung-Jane |
口試委員: |
郭明清
Kuo, Ming-Ching 賴宇紳 Lai, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 單光子崩潰電晶體 、冷卻電路 、遲滯現象 、蓋格模式 、延長元件崩潰後停留在崩潰電壓之下的時間 |
外文關鍵詞: | Single-Photon Avalanche Transistor, Quenching Circuit, Hysteresis, Geiger mode, Hold-off time |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年的科技快速進步,有高偵測率的光偵測器在生活中的應用日漸增加,如何創造出操作電壓小、耗能小以及易於外部電路整合成單一晶片等優點的單光子偵測器,將會是相當有前瞻性的研究,而普遍常見的單光子崩潰二極(Single photon avalanche diode, SPAD)的操作電壓大約在十幾伏特以上,為了使操作電壓可以更少,本論文將嘗試利用電晶體設計單光子崩潰電晶體(Single photon avalanche transistor, SPAT)。
本篇論文的縱向電晶體架構,在不更動任何現有製程條件的情況下,採用TSMC 0.18μm 標準CMOS製程製作。利用電晶體的BVCBO>BVCEO特性,使電晶體操作電壓定為BVCEO。為了操作SPAT,我們詳細探討利用主動冷卻電路(Active quenching circuit, AQC)克服遲滯現象的可能性,除此之外,設計的AQC可調變Hold-off time的功能,可依元件特性調解Hold-off time長度。
量測結果發現,由於操作在Geiger mode,在崩潰的時候,電晶體的響應度確實可以到達30 GA⁄W等級,對於弱光極為敏感。不過,如果要使用於SPAT的應用,須對基極電位設計一個開關,源於發生崩潰時,會有大量的電洞存在於基極端,如果不將其電洞快速排出的話,電子依舊會從射極注入過來,將無法進行下一次的計數。
Along with the rapid improvement of technology, the applications of photodetectors with high sensitivity increase gradually. Creating single-photon avalanche detectors with low bias voltage, low power consumption, and easy integration with quenching circuits can be prospective research. In general, a SPAD is biased at high voltage larger than 10V. In order to reduce operation voltage, a SPAT is designed as a function of a photodetector in this work.
In this work, a vertical transistor with low breakdown voltage is presented by TSMC 0.18μm standard CMOS process without any process modifications. It is biased at BVCEO by taking advantage of the characteristic of a transistor, BVCBO>BVCEO. For the purpose of controlling the SPAT, an AQC is introduced to evaluate the probability of overcoming the hysteresis effect. Furthermore, the AQC is also designed to adjust the hold-off time according to the characteristic of the SPAT.
Measurement shows that the SPAT is operating in Geiger mode and its responsivity can reach 30 GA⁄W. It is extremely sensitive to the low power light. A large number of holes are generated during the avalanche period, and these holes need to be repelled rapidly. Otherwise, it can be difficult to detect the next count since the electrons are injected from the emitter constantly. Therefore, a properly designed switch on the base is necessary for better control of the SPAT.
[1] 戴嘉邑, “標準CMOS製程之單光子偵測器,” 國立交通大學, 電子工程研究所, 碩士論文, 中華民國九十九年八月
[2] S. Radovanovic, A.-J. Annema, and B. Nauta, “High-speed photodiodes in standard CMOS technology,” Springer Science & Business Media, pp.20-24, 2006.
[3] S. O. Kasap, “Photodetectors and Image Sensors,” Optoelectronics and Photonics: Principles and Practices,2nd ed. New Jersey, Pearson, ch5, sec.4, pp.378-379, 2012
[4] H. T. Yen, “InGaAs Avalanche Photodiode for Single-Photon-Detector Application,” Master thesis, National Chiao Tung University, Taiwan, 2012.
[5] R. Henderson, G.-F. Dalla-Betta, L. Pancheri, D. Stoppa, and J. Richardson, “Avalanche photodiodes in submicron CMOS technologies for high-sensitivity imaging,” Advances in Photodiodes, pp. 226-228, 2011
[6] B. F. Aull et al., “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Laboratory Journal, vol. 13, no. 2, pp. 335-349, 2002.
[7] A. Gallivanoni, I. Rech, and M. Ghioni, “Progress in Quenching Circuits for Single Photon Avalanche Diodes,” IEEE Transactions on Nuclear Science, vol. 57, no. 6, pp. 3815-3826, 2010, doi: 10.1109/TNS.2010.2074213.
[8] C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A Single Photon Avalanche Diode Implemented in 130-nm CMOS Technology,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 863-869, 2007, doi: 10.1109/JSTQE.2007.903854.
[9] S. M. Sze and K. K. Ng, “Physics of semiconductor devices,” John wiley & sons, pp. 82-86, 2006.
[10] A. G. Stewart, L. Wall, and J. C. Jackson, “Properties of silicon photon counting detectors and silicon photomultipliers,” Journal of Modern Optics, vol. 56, no. 2-3, pp. 240-252, 2009/01/20 2009, doi: 10.1080/09500340802474425.
[11] Donald A.Neaman , “Semiconductor Physics and Devices:Basic Principle, 4e,” McGraw-Hill, pp. 534-535, 2003
[12] J.-W. Han and M. Meyyappan, “Trigger and Self-Latch Mechanisms of npn
Bistable Resistor,” Electron Device Letters, IEEE, vol. 35, pp. 387-389, 2014
[13] F. d. S. Campos, N. Faramarzpour, O. Marinov, M. J. Deen, and J. W. Swart, “Photodetection With Gate-Controlled Lateral BJTs From Standard CMOS Technology,” IEEE Sensors Journal, vol. 13, no. 5, pp. 1554-1563, 2013, doi: 10.1109/JSEN.2012.2235827.
[14] 林祐玄, “標準CMOS製程下實現高響應度橫向光感測器電晶體之研究,” 國立清華大學, 電子工程研究所, 碩士論文, 中華民國一百零六年十月
[15] 洪鉦傑, “探討標準CMOS製程中以橫向寄生雙極性電晶體實現低崩潰電壓單光子崩潰電晶體之可行性,” 國立清華大學, 電子工程研究所, 碩士論文,中華民國一百零八年十二月
[16] 沈昇鴻, “標準SiGe BiCMOS製程中實現高響應度及高速光偵測電晶體,” 國立清華大學, 電子工程研究所, 碩士論文, 中華民國一百零四年七月