簡易檢索 / 詳目顯示

研究生: 陳昌信
Chang-Xin Chen
論文名稱: 摻雜鈥元素之矽奈米線的製備及分析
Synthesis and Analysis of Holmium-doped Silicon Nanowires
指導教授: 陳力俊
Lih-Juann Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 62
中文關鍵詞: 奈米線
外文關鍵詞: nanowires, silicon, holmium
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The research focuses on the synthesis of holmium doped silicon nanowires. Large-area silicon nanowires on Au-coated silicon substrates were prepared with silicon and holmium chloride as sources. The formation mechanism of silicon nanowires could be explained by a vapor-liquid-solid (VLS) growth process with metal catalysts. Variation of the experimental parameters, such as pressure, temperature, carrier gas, and the ratio of silicon and holmium chloride sources led to the finding of the optimal growth conditions. The carrier gases were found to influence significantly the diameter of the silicon nanowires. The transmission electron microscope image shows a typical silicon nanowire with coaxial nanostructures with a silicon nanowire core inside and an outer amorphous oxide sheath. For field emission properties, the excellent turn-on field and β value of the nanowires were attributed to the high density of silicon nanowires. In the I-V measurements, consistent values of resistivity were obtained.


    Contents Contents-------------------------------------------------------------------------------------I Acknowledgement-----------------------------------------------------------------III Abstract-----------------------------------------------------------------------------------IV Chapter 1. Introduction 1.1 Nanotechnology of One-Dimensional Nanomaterials------------------------------ 1 1.2 Characteristics of Silicon-----------------------------------------------------------------2 1.3 Holmium Dopant---------------------------------------------------------------------------5 1.4 Growth Methods of Nanowires----------------------------------------------------------6 1.4.1 The VLS Growth Mechanism-----------------------------------------------------------6 1.4.2 The OAG Approach-----------------------------------------------------------------------7 1.4.3 The Template Assisted Synthesis Method----------------------------------------------9 Chapter 2. Experimental Procedures 2.1 Preparation of Ho-doped Silicon Nanowires----------------------------------------11 2.1.1 Preparation of the Silicon Substrates--------------------------------------------------11 2.1.2 Synthesis of The Ho-doped Silicon Nanowires--------------------------------------11 2.2 Scanning Electron Microscope Observation----------------------------------------15 2.3 Energy Dispersive Spectrometer Analysis-------------------------------------------16 2.4 Transmission Electron Microscope Observation-----------------------------------16 2.5 Electron Beam Evaporation System--------------------------------------------------17 2.6 Field Emission Measurements---------------------------------------------------------17 2.7 Deposition of Contact Pad--------------------------------------------------------------17 2.8 Current-Voltage (I-V) Measurements------------------------------------------------18 Chapter 3. Results and Discussion 3.1 SEM Analysis------------------------------------------------------------------------------19 3.11 The Influence of Pressure on Diameter------------------------------------------------41 3.12 The Influence of Temperature on Diameter-------------------------------------------43 3.1.3 EDS Analysis-----------------------------------------------------------------------------44 3.3 TEM Analysis------------------------------------------------------------------------------45 3.4 Field-Emission Properties---------------------------------------------------------------47 3.5 Current-Voltage Measurements-------------------------------------------------------50 3.6 Ho-doped Silicon Nanowires-----------------------------------------------------------52 Chapter 4. Summary and Conclusions---------------------------53 References--------------------------------------------------------------------------------------55

    References
    Chapter 1
    1.1 S. Iijima, Helical microtubeles of graphitic carbon, Nature 354 (1991)
    56-58
    1.2 A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune,
    and M J. Heben, Storage of hydrogen in single-walled carbon nanotubes,
    Nature 386 (1997) 377-379
    1.3 M. Dresselhaus, G. Dresselhaus, P. Eklund, and R. Saito, Carbon
    nanotubes, Phys.World 33 (1998) 33-38
    1.4 J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker,
    Electronic structure of atomically resolved carbon nanotubes, Nature
    391(1998) 59-62
    1.5 P. M. Ajayan, Nanotubes from carbon, Chem. Rev. 99 (1999) 1787-1799
    1.6 C. Dekker, Carbon nanotubes as molecular quantum wires, Phys. Today 52
    (1999) 22-28
    1.7 S. J. Tans, A. R. M. Verschueren and C. Dekker, Room-temperature
    transistor based on a single carbon nanotube, Nature 393 (1998) 49-52
    1.8 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H.
    Dai, Nanotube molecular wires as chemical sensors, Science 287 (2000)
    622-625
    1.9 P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme oxygen
    sensitivity of electronic properties of carbon nanotubes, Science 287 (2000)
    1801-1804
    1.10 Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig,
    and R. P. H. Chang, A nanotube-based field-emission flat panel display,
    Appl. Phys. Lett. 72 (1998) 2912-2913
    1.11 S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H.
    Dai, Self-oriented regular arrays of carbon nanotubes and their field
    emission properties, Science 283 (1999) 512-514
    1.12 J. Hu, M. Ouyang, P, Yang, and C. M. Lieber, Controlled growth and
    electrical properties of heterojunctions of carbon nanotubes and silicon
    nanowires, Nature 399 (1999) 48-51
    1.13 T. Odom, J. Huang, P. Kim, and C. Lieber, Atomic structure and electronic
    properties of single-walled carbon nanotubes, Nature 391 (1998) 62-64
    1.14 T. W. Ebbesen, H. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T.
    Thio, Electrical conductivity of individual cabon nanotubes, Nature 382
    (1996) 54-56
    1.15 A. Batchtold, C. Strunk, J. P. Salvetat, J. M. Bonard, L. Forro, T. Nussbaumer,
    and C. Schonenberger, Atomic structure and electronic properties of
    single-walled carbon nanotubes, Nature 397 (1999) 673-675
    1.16 D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee, Atomic
    structure and electronic properties of single-walled carbon nanotubes,
    Science 299 (2003) 1874-1877
    1.17 D. Appell, Wired for success, Nature 419 (2002) 553-555
    1.18 Y. Cui, X. Duan, J. Hu, and C. M. Lieber, Doping and electrical transport in
    silicin nanowires, J. Phys. Chem. B 104 (2000) 5213-5216
    1.19 J. Y. Yu, S. W. Chung, and J. R. Heath, Silicon nanowires : Preparation,
    device fabrication, and transports properties, J. Phys. Chem. B 104 (2000)
    11864-11870
    1.20 S. W. Chung, J. Y. Yu, and J. R. Heath, Silicon nanowire devices, Appl. Phys.
    Lett. 76 (2000) 2068-2070
    1.21 Y. Cui, C. M. Lieber, Functional nanoscale electronic devices assembled
    using silicon nanowire building blocks, Science 291 (2001) 851-853
    1.22 Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, High
    performance silicon nanowire field effect transistors, Nano Lett. 2 (2003)
    149-152
    1.23 Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire nanosensors for
    highly sensitive and selective detection of biological and chemical species,
    Science 293 (2001) 1289-1292
    1.24 X. Duan, Y. Huang, R. Agarwal, and C.M. Lieber, Single-nanowire
    electrically driven lasers, Nature 421 (2003) 241-245
    1.25 M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo,
    and P. Yang, Room-temperature ultraviolet nanowire nanolasers, Science
    292 (2001) 1897-1899
    1.26 X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L.
    Goldman, High-performance thin-film transistors using semiconductor
    nanowires and nanoribbons, Nature 245 (2003) 274-278
    1.27 V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess, and U. Gcsele, Realization
    of a silicon nanowire vertical surround-gate field-effect transistor, Small 2
    (2003) 85-88
    1.28 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M.
    Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric
    performance of rough silicon nanowires, Nature 451 (2008) 163-168
    1.29 A. I. Boukai, Y. Bunimovich, T. K. Jamil, J. K. Yu, W. A. Goddard III and J.
    R. Heath, Silicon nanowires as efficient thermoelectric materials, Nature
    451 (2008) 168-171
    1.30 O.V. Aleksandrov, A.O. Zakharin, N.A. Sobolev, E.I. Shek, M.I.
    Makovijchuk, and E.O. Parshin, Formation of donor centers upon
    annealing of dysprosium-and holmium-implanted silecon, Semiconductors
    32 (1998) 921-923
    1.31 V.V. Emtsev, Jr, D.S. Poloskin, N.A. Sobolev, E.I. Shek, J. Michel, and L.C.
    Kimerling. Impurity centers in silicon doped with rare-earth impurities of
    dysprosium, holmium, erbium, and ytterbium, Semiconductors 33 (1999)
    603-605
    1.32 V.I. Vdovin, T.G. Yugova, N.A. Sobolev, E.I. Shek, M.I. Makovijchuk and
    E.O. Parshin, Extended defects in Si wafers implanted with ions of
    rare-earth elements, Nucl. Instrum. and Methods in Phys. Reserch. B 147
    (1999) 116-121
    1.33 J. Michel, J.L. Benton, R.F. Ferrante, D.C. Jacobson, D.J. Eaglesham, E.A.
    Fitzgerald, Y.-H. Xie, J.M. Poate, and L.C. Kimerling, Impurity
    engancement of the 1.54 μm Er3+ luminescence in silicon, J. Appl. Phys. 70
    (1991) 2672-2678
    1.34 F. Priolo, G. Franz□, S. Coffa, A. Polman, S. Libertino, R. Barklie, and D.
    Carey, The erbium-impurity interaction and its effects on the 1.54 μm
    luminescence of Er3+ in crystslline silicon, J. Appl. Phys. 78 (1995)
    3874-3882
    1.35 G. Franz□, F. Priolo, S. Coffa, A. Polman and A. Carnera, Room-temperature
    electroluminescence from Er-doped crystalline Si, Appl. Phys. Lett. 64
    (1994) 2235-2237
    1.36 B. Zheng, J. Michel, F.Y.G. Ren, L.C. Kimerling, D.C. Jacobson, and J.M.
    Poate, Room-temperature sharp line electroluminescence at X=1.54 pm
    from an erbium-doped, silicon light-emitting diode, Appl. Phys. Lett. 64
    (1994) 2842-1844
    1.37 R.S.Wagner, and W.C.Ellis, Appl. Phys. Lett 4 (1964 ) 89
    1.38 J. Westwater, and D. P. Gosain, Growth of silicon nanowires via gold/silane
    vapor-liquid-solid reaction, J. Vac. Sci. Technol. B 1997, 15, 554
    1.39 Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T.
    Lee, Silicon nanowires prepared by laser ablation at high temperature,
    Appl. Phys. Lett. 72 (1998) 1835-1837
    1.40 N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee, and S. T. Leea),
    SiO2-enhanced synthesis of Si nanowires by laser ablation, Appl. Phys.
    Lett. 73 (1998) 3902-3904
    1.41 N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, Nucleation and
    growth of Si nanowires from silicon oxide, Phys. Rev. B 58 (1998)
    16024-16026
    1.42 M. Zhang, E. Ciocan, Y. Bando, K. Wada, L. L. Cheng, and P. Pirouz, Bright
    visible photoluminescence from silica nanotube flakes prepared by the
    sol–gel template method, Appl. Phys. Lett. 80 (2002) 491-493
    1.43 H. Cao, Y. Xu, J. Hong, H. Liu, G. Yin, B. Li, C. Tie, and Z. Xu, Sol-gel
    template synthesis of an array of single crystal CdS nanowires on a
    porous alumina Template, Adv. Mater. 13 (2001) 1393-1394
    1.44 Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang,
    Electrochemically induced sol-gel preparation of single-crystalline TiO2
    nanowires, Nano lett. 2 (2002) 717-720
    1.45 G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo, and Y. Q. Mao,
    Large-scale synthesis of single crystalline gallium nitride nanowires, Appl.
    Phys. Lett. 75 (1999) 2455-2457

    Chapter 3
    3.1 Y. L. Cheuh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen,
    Synthesis of taperlike Si nanowires with strong field emission, Appl. Phys.
    Lett. 86 (2005) 133112.1-13312.3
    3.2 C. T. Huang, C. L. Hsin, K. W. Huang, C. Y. Lee, P. H. Yeh, U. S. Chen, and
    L. J. Chen, Er-doped silicon nanowires with 1.54 μm light-emission and
    enhanced electrical and field-emission properties, Appl. Phys. Lett. 91
    (2007) 093133.1-093133.3
    3.3 Y. L. Cheuh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C.D. Chen, TaSi2
    Nanowires: A Potential Field Emitter and Interconnect, Nano Lett. 8 (2006)
    1637-1644
    3.4 Y. Cui, X. F. Duan, J. T. Hu, and C. M. Lieber, Doping and Electrical
    Transport in Silicon Nanowires, J. Phys. Chem. B 104 (2000) 5213-5216

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE