簡易檢索 / 詳目顯示

研究生: 楊世昌
Yang, Shih-Chang
論文名稱: 芳香分子異構物電子激發態及離子光譜研究
Vibronic and cation spectroscopy of various isomers of aromatic molecules
指導教授: 倪其焜
Ni, Chi-Kun
曾文碧
Tzeng, Wen-Bih
口試委員: 林聖賢
何嘉仁
金必耀
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 166
中文關鍵詞: 氘取代異構物光譜振動游離能
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在探討苯酚(aniline)及吲哚(indole)衍生物在第一電子激發態(first excited S1 state)及離子態(cationic D0 state)的特性,我們應用共振雙光子(resonant two-photon ionization)及質量解析臨界游離(mass analyzed threshold ionization)兩種光譜技術來進行研究,我們研究了三種不同類別分子系統,分別是:(1)苯酚及吲哚衍生物的氘取代物,(2)鄰位及間位二甲氧基苯分子(dimethoxybenzene),及(3)4、5及6號氟吲哚(4-, 5-, and 6-fluoroindole)位置異構物(positional isomer)。為了更進一步瞭解分子的特性,我們也進行了從頭算起(ab initio)及密度泛涵理論(density- functional theory)計算,計算結果與實驗數據相符,支持了我們在實驗上的發現。
    在氟化及氯化苯胺的研究部分,我們成功了得到了鄰位及間位氟化苯胺(o- and m-fluoroaniline)及鄰位、間位及對位甲基苯胺(o-, m- and p-methylaniline)氘取代物的電振(vibronic)及離子光譜(cation spectra),分析這些光譜得知,大部分譜線是屬於苯環的運動,胺基(amino group)的反轉運動(inversion motion)是苯胺衍生物的特徵運動之一,這類運動也在氟化及甲基苯胺衍生物的電振譜上被觀測到,此外,比較同一分子不同氘取代異構物的振動頻率後,可觀察到部分振動的頻率因氘取代有降低的現象,此現象在胺基的反轉運動最為頻率尤其顯著,部分苯環伴隨胺基的振動的頻率亦觀察到頻率降低的現象。
    在氘取代吲唑(indazole)及苯並咪唑(benzimidazole)的實驗部分,絕大多數的光譜譜線來至於平面的振動運動,將氘取代光譜與為氘取代的光譜比較後可知,氫與氘的置換反應(H/D substitution)主要發生在雜環的五環上。此外,雖然兩個分子都可能存在互變異構體(tautomer),分析所得到的實驗數據,吲唑及苯並咪唑都只有一個互變異構體參與光激發及游離的過程。
    在雙甲氧基苯(dimethoxybenzene)轉動異構物(rotational isomers)的研究部分,分析實驗數據顯示,鄰位雙甲氧基苯(o-dimethoxybenzene) 只有一個轉動異構物參與光激發及游離過程(photo-excitation and ionization processes),然而間位雙甲氧基苯(m-dimethoxybenzene)三個轉動異構物在這個過程中被偵測到。在振動光譜的數據顯示,大部分的振動都是來自於苯環的運動,甲氧基的這些運動的影響很小。
    分析4、5及6號氟化吲哚(4-, 5-, and 6-fluoroindole)三種位置異構物(positional isomer)的光譜可知,五號的游離能最高,六號最低,絕大多數的譜線都是來自於苯環的平面運動,且五號氟化吲哚的光譜所觀察到的譜線最多,四號則最簡單。所得到的清晰光譜即所謂的分子指紋,不僅有助於瞭解分子的特性,亦可可作為分子鑑定之用。


    The resonant two-photon ionization and mass analyzed threshold ionization spectroscopic techniques have been used to study the molecular properties of (1) deuterium-substituted isotopomers of aniline and indole derivatives, (2) rotational isomers of o-dimethoxybenzene and m-dimethoxybenzene, and (3) positional isomers of fluoroindole. These new vibronic and cation spectra provide information about (1) origin of the S1 □ S0 electronic transition, (2) adiabatic ionization energy, (3) active vibrations in the electronically excited S1 and cationic D0 states. The ab initio and density functional theory calculations are also performed to support our experimental findings.
    The present results on aniline derivatives show that the N-deuteration leads to a small decrease in the frequencies of the characteristic N-inversion motion and some ring vibrations involving the amino group. Comparing the experimental data of 1D-indazole, 1H2D-benzimidazole, 1D2H-benzimidazole, and 1D2D-benzimidazole with those of indzole and benzimidazole, one finds that the H/D substitution mainly takes place on the five-membered ring containing the N atom.
    Studies of rotational isomers show that o-dimethoxybenzene has only one stable configuration involved in the photo-excitation and ionization processes. In contrast, there are three stable rotational isomers participated in the m-dimethoxybenzene experiments. Analysis on the vibronic and cation spectra shows that most of the active vibrations of these isomeric species in the S1 and D0 states result from in-plane ring vibrations. Moreover, different orientation of the two OCH3 groups has little effect on the observed vibrations. The experimental results of fluoroindole show that the the ionization energies among these position isomers only differ by a few hundreds of wavenumbers. Most of the observed active vibrations of the cations result from the in-plane ring modes. The F substitution effects on the molecular vibration and transition energy somewhat depend on the location of the fluorine atom on the aromatic ring.

    Abstract…………………………………………………………………І Acknowledgement……………………………………………………….Ⅲ Table Captions…………………………………………………………Ⅵ Figure Captions……………………………………………….......Ⅸ 1. Introduction…………………………………………………......1 1.1. REMPI spectroscopy……………………………………………..4 1.2. MATI spectroscopy………………………………………………10 References………………………………………………………………17 2. Experimental Techniques……......……………………………20 2.1. Experimental setup…………………………….…...……...20 2.2. Data acquisition…………………….……….……………...27 2.3. Experimental conditions…………...….……………………32 2.4. Theoretical calculations…………………………....…...39 References….………………………………………….............47 3. Deuterium-Substituted Isotopomers ……..………………...49 3.1. Deuterium-substituted indazole and benzimidazole…….49 3.1.1. Introduction……………..…………..………………..….49 3.1.2. TOF mass spectra……………..…………..…….……... 50 3.1.3. Vibronic and cation spectra of indazole……..….….55 3.1.4. Vibronic and cation spectra of benzimidazole….……59 3.1.5. Discussion……………..…………..……………..……….63 3.2. Deuterium-substituted isotopomers of o- and m-fluoroaniline.............................................68 3.2.1. Introduction……………..…………..……………..…….68 3.2.2. TOF mass spectra ……………..…………..………………71 3.2.3. Vibronic and cation spectra of o-fluoroaniline …..77 3.2.4. Vibronic and cation spectra of m-fluoroaniline …..81 3.2.5. Discussion……………...........................……82 3.3. Deuterium-substituted isotopomers of o-, m- and p-methylaniline….………....................................86 3.3.1. Introduction……..…….………..........……………..86 3.3.2. TOF mass spectra……………..…………...............87 3.3.3. Vibronic and cation spectra of o-methylaniline.....89 3.3.4. Vibronic and cation spectra of m-methylaniline.....96 3.3.5. Vibronic and cation spectra of p-ethylaniline.....102 3.3.6 Discussion……………..…………..……….…..........108 References……………..…………..……………........……….111 4. Rotational and Positional Isomers…..……………...……114 4.1. Rotational isomers of o- and m-dimethoxybenzene.…..114 4.1.1. Introduction……………..…………..………..........114 4.1.2. cation spectra of o-dimethoxybenzene……………....116 4.1.3. Vibronic and cation spectra of m-dimethoxybenzene.121 4.1.4. Discussion……………..……............……………..133 4.2. Positional isomers of 4-, 5-, and 6-fluroindole…….142 4.2.1. Introduction…….………………...........…………..142 4.2.2. Vibronic and cation spectra of 4-fluoroindole…….143 4.2.3. Vibronic and cation spectra of 5-fluoroindole.....148 4.2.4. Vibronic and cation spectra of 6-fluoroindole.....151 4.2.5. Discussion……………..…………..……………....……155 References….…….………………………..……........……...161 5. Conclusion…………………….…………...................164 6. Publication List....……..…………………………………..166

    [1] J. McMurry, Organic Chemistry; 7th edition: Brooke/Cole Publishing Company: Belmont, CA, 2007.
    [2] J.M. Hollas, D. Phillips, Blackie Academic and Professional, London, 1995.
    [3] T.M. Dunn, R. Tembreull, D. M. Lubman, Chem. Phys. Lett. 121 (1985) 453.
    [4] M.Gerhards, S. Schumm, C. Unterberg, K. Kleinermanns, Chem. Phys. Lett. 294 (1998) 65.
    [5] M. Gerhards, C. Unterberg, S. Schumm, J. Chem. Phys. 111 (1999) 7966.
    [6] S. Yamamoto, K. Okuyama, N. Mikami, M. Ito, Chem. Phys. Lett. 125 (1986) 1.
    [7] W.B. Tzeng, K. Narayanan, C.Y. Hsieh, C.C. Tung, J. Mol. Struct. 448 (1998) 91.
    [8] G.N. Patwari, S. Doraiswamy, S. Wategaonkar, Chem. Phys. Lett. 316 (2000) 433.
    [9] J.L. Lin, L.C.L. Huang, W.B. Tzeng, J. Phys. Chem. A 105 (2001) 11455.
    [10] G.M. Anderson III, P.A. Kollman, L.N. Domelsmith, K.N. Houk, J. Am. Chem. Soc. 101 (1979) 2344.
    [11] P.J. Breen, E.R. Bernstein, H.V. Sector, J.I. Seeman, J. Am. Chem. Soc. 111 (1989)1958.
    [12] J.T. Yi, J.W. Ribblett, D.W. Pratt, J. Phys. Chem. A 109 (2005) 9456.
    [13] The NIST Chemistry Webbook, http://webbook.nist.gov/, and references therein.
    [14] G. Varsanyi, Wiley: New York, 1974.
    [15] L. Yuan, C. Li, J.L. Lin, S.C. Yang, W.B. Tzeng, Chem. Phys. 323 (2006) 429.
    [16] E.W. Schlag, Cambridge University Press: Cambridge, 1998.
    [17] S. Ullrich, W.D. Gepper, C.E.H. Dessent, K. Müller-Dethlefs, J. Phys. Chem. A 104 (2000) 11864.
    [18] M. Takahashi, K. Kimura, J. Chem. Phys. 97 (1992) 2920.
    [19] X. Song, S. Pauls, J. Lucia, P. Du, E. R. Davidson, J. P. Reilley, J. Am. Chem. Soc. 113 (1991) 3202.
    [20] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 115 (2001) 743.
    [21] M. Pradhan, C. Li, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 407 (2005) 100.
    [22] J.L. Lombardi, J. Chem. Phys. 50 (1969) 3780.
    [23] K.T. Huang, J.L. Lombardi, J. Chem. Phys. 51 (1969) 1228.
    [24] K. Yosida, K. Suzuki, S. Ishiuchi, M. Sakai, M. Fujii, C. E. H. Dessent, K. Müller-Dethlefs, Phys. Chem. Chem. Phys. 4 (2002) 2534.
    [25] B. Zhang, C. Li, H. Su, J.L. Lin, W. B. Tzeng, Chem. Phys. Lett. 390 (2004) 65.
    [26] G. Herzberg, van Nostrand Reihold Co.: N.Y., 1966.
    [27] R.G. Neuhauser, K. Siglow, H.J. Neusser, J. Chem. Phys. 106 (1997) 896.
    [28] O. Dopfer, K. Müller-Dethlefs, J. Chem. Phys. 101 (1994) 8508.
    [29] C. Li, H. Su, W.B. Tzeng, Chem. Phys. Lett. 410 (2005) 99.
    [30] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
    [31] J.L. Lin, C.J. Huang, C.H. Lin, W.B. Tzeng, J. Mol. Spectrosc. 244 (2007) 1.
    [32] T.L.O. Barstis, L.I. Grace, T.M. Dunn, D.M. Lubman, J. Phys. Chem. 97 (1993) 5820.
    [33] G.A. Bicker, D.R. Demmer, E.A. Outhouse, S.C. Wallace, J. Chem. Phys. 91 (1989) 6013.
    [33] T. Vondrak, S. Sato, K. Kimura, J. Phys. Chem. A 101 (1997) 2384.
    [34] J.E. Braun, Th.L. Grebner, H.J. Nersser, J. Phys. Chem. A 102 (1998) 3273.
    [35] J. Hager, S.C. Wallace, J. Phys. Chem. 87 (1983) 2121.
    [36] J.E. Braun, M. Clara, H.J. Nersser, P. Hobza, J. Phys. Chem. A 107 (2003) 3918.
    [37] J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 337 (2003) 620.
    [38] J.L. Lin, S. Zhang, W.B. Tzeng, J. Chem. Phys. 120 (2004) 5057.
    [40] N.H. Ayachit, A.M. Huralikoppi, M.A. Shashidhar, Spectrochim. Acta 42A (1986) 781.
    [41] T.L.O. Barstis, L.I. Grace, T.M. Dunn, D.M. Lubman, J. Phys. Chem. 98 (1994) 4261.
    [42] T. Liu, P.R. Callis, B.H. Hesp, M. de Groot, W.J. Buma, .J. Broos, J. Am. Chem. Soc. 127 (2005) 4104.
    [43] J. Tomkinson, J. Riesz , P. Meredith, S.F. Parker, Chem. Phys. 345 (2008) 230.
    [44] http://www.acdlabs.com/iupac/nomenclature/.
    [45] J. A. Pople, A. P. Scott, M. W. Wong, and L. Radom, Israel J. Chem. 33, 345 (1993)
    [46] L.A. Curtiss, K. Raghavachari, P.C. Redferm, J.A. Pople, J. Chem. Phys. 112 (2000) 7374.
    [47] L.A. Curtiss, K Raghavachari, P. C. Redfern, V. Rassolov, J.A. Pople, J. Chem. Phys. 109 (1998) 7764.
    [48] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126 (2007) 084108. K. Raghavachari, J. Chem. Phys. 126 (2007) 084108.
    [49] A.R. Campanelli, A. Domenicano, F. Ramondo, J. Phys. Chem. A 107 (2003) 6429.
    [50] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 115 (2001) 743.
    [51] W.B. Tzeng, K. Narayanan, C.Y. Hsieh and C.C. Tung, J. Chem. Soc. Faraday Trans., 93 (1997) 2981.
    [52] J.L. Lin, W.B. Tzeng, Phys. Chem. Chem. Phys. 2 (2000) 3759.
    [53] J.L. Lin, K.C. Lin, W.B. Tzeng, Appl. Spectrosc. 55 (2000) 120.
    [54] W.B. Tzeng, J.L. Lin, J. Phys. Chem. A 103 (1999) 8612.
    [55] J.L. Lin, W.B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
    [56] S.C. Yang, W.B. Tzeng, Chem. Phys. Lett. 501 (2010) 6.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE