簡易檢索 / 詳目顯示

研究生: 楊閔富
Yang, Min-Fu
論文名稱: 白金錳序化對於電流驅動翻轉之研究
Effect of PtMn Ordering on Electrically Switching
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 林秀豪
Lin, Hsiu-Hau
黃國峰
Huang, Kuo-Feng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 自旋霍爾效應白金錳電流驅動翻轉序化
外文關鍵詞: Electrically
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究白金錳在不同序化的條件下對於電流翻轉效應的影響,並為此展開一系列的實驗。實驗內容大抵上可以包括為兩部分:(一)以共濺鍍方式製備白金錳(二)三種白金錳元件的分析。
    第一部分主要是利用膜層結構sub/PtMn/Co/Ti 以分析、調整白金錳的性質。這部分的實驗囊括成分、退火時間、退火溫度與白金錳厚度的調整。
    在第二部分的實驗設計上,利用第一部份的實驗結果,接續在白金錳上長出具有垂直異向性的鈷白金多層膜。在結構sub/Ti/Pt/PtMn/[Co/Pt]2/Ti 下設計出三種不同白金錳狀態的元件──無序化、序化但沒有交換場、序化且有交換場,並且分析其有效場以及電流翻轉特性。


    The purpose of this thesis is to study the effect of platinum-manganese on current flipping under different conditions. A series of experiments are carried out for this purpose. The experiments can be roughly classified into two parts: (I) Analysis of the preparation of platinum-manganese; (II) analysis of three different platinum-manganese devices.
    The first part is mainly about the analysis of platinum manganese with film structure sub/PtMn/Co/Ti. This part of the experiment includes the composition, annealing time, annealing temperature, and platinum manganese thickness adjustment.
    In the second part of the experimental design, with the results of the first part of the experiment, the cobalt-platinum multilayers with vertical anisotropy was grown on platinum-manganese. And three devices of the same structure sub/Ti/Pt/PtMn/[Co/Pt]2/Ti but different platinum-manganese conditions—disordering, ordering but without exchange field, ordering with exchange field are discussed. Also the analysis of their effective fields and electrically switching behaviors are studied.

    第一章 前言 1 第二章 文獻回顧 2 2.1 磁異向性 2 2.1.1 磁晶異向性 3 2.1.2 形狀異向性 3 2.1.3 磁伸縮異向性 4 2.1.4 垂直異向性 5 2.1.5 交換異向性 6 2.2 白金錳的性質 10 2.3自旋軌道力矩(SPIN ORBIT TORQUE, SOT) 12 2.3.1 RASHBA 效應與自旋軌道力矩 13 2.3.2 自旋霍爾效應與自旋軌道力矩 15 2.3.3 區分FIELD-LIKE 和DAMPING-LIKE TORQUE 的方法 20 2.3.4 自旋霍爾力矩的近期發展 23 第三章 實驗設備與分析儀器 25 3.1 高真空共濺鍍系統 25 3.2 X-射線繞射分析 ( X-RAY DIFFRACTION) 26 3.3原子力顯微鏡 ( ATOMIC FORCE MICROSCOPE ) 27 3.4震動樣品磁測儀 ( VIBRATING SAMPLE MAGNETOMETER ) 28 3.5聚焦式極化磁光柯爾效應儀 ( FOCUSED POLAR MAGNETO-OPTICAL KERR EFFECT ) 29 3.6 磁真空退火爐 (MAGNETIC THERMAL ANNEALING) 30 3.7 黃光微影製程 (PHOTOLITHOGRAPHY) 32 3.8 簡協量測(HARMONIC MEASUREMENT) 33 3.9 X光螢光光譜分析儀 ( X-RAY FLUORESCENCE ) 34 第四章 實驗結果與討論 35 4.1白金錳的調整與性質 35 4.1.1 白金錳成分調整 35 4.1.2 白金錳退火溫度與時間調整 37 4.1.3 白金錳厚度調整 39 4.2 白金錳與電流反轉特性 40 4.2.1 白金錳與鈷白金多層膜 40 4.2.2 等效場量測(EFFECTIVE FIELD MEASUREMENT) 44 4.2.3 白金錳與電流驅動翻轉 47 第五章 結論 55 文獻參考 57

    1. Parkin SS, Hayashi M, Thomas L. Magnetic domain-wall racetrack memory. Science 320, 190-194 (2008).
    2. Bhowmik D, You L, Salahuddin S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nat Nanotechnol 9, 59-63 (2014).
    3. Franken JH, Swagten HJ, Koopmans B. Shift registers based on magnetic domain wall ratchets with perpendicular anisotropy. Nature nanotechnology 7, 499-503 (2012).
    4. Allwood DA, Xiong G, Faulkner CC, Atkinson D, Petit D, Cowburn RP.
    Magnetic domain-wall logic. Science 309, 1688-1692 (2005).
    5. Kent AD. SPINTRONICS Perpendicular all the way. Nature materials 9, 699-700 (2010).
    6. Thomas L, Jan G, Zhu J, Liu HL, Lee YJ, Le S, Tong RY, Pi KY, Wang YJ, Shen DN, He RR, Haq J, Teng J, Lam V, Huang KL, Zhong T, Torng T, Wang PK. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited). J Appl Phys 115, 172615 (2014).
    7. Landau, L.D., E.M.& Pitaevski, L.P. Electrodynamics of Continuous Media(Elsevier, 2014)
    8. Koon, N. C. Calculations of exchange bias in thin films with ferromag- netic/antiferromagnetic interfaces. Phys. Rev. Lett. 78, 4865–4868 (1997).
    9. Schulthess, T. & Butler, W. Coupling mechanisms in exchange biased films (invited). J. Appl. Phys. 85, 5510–5515 (1999).
    10. Nowak, U., Misra, A. & Usadel, K. Domain state model for exchange bias. J. Appl. Phys. 89, 7269–7271 (2001).
    11. Nowak, U. et al. Domain state model for exchange bias. I. Theory. Phys. Rev. B 66, 014430 (2002).
    12. Radu, F. Fundamental aspects of exchange bias effect (Ruhr- University Bochum, 2005).
    13. Radu, F., Westphalen, A., Theis-Brohl, K. & Zabel, H. Quantitative description of the azimuthal dependence of the exchange bias effect. J. Phys.:Condens. Matter 18, L29–L36 (2006).
    14. Malozemoff, A.P. Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679-3682(1987)
    15. Radu, F. & Zabel, H. Springer tracts in modern physics, vol. 227 (Springer, 2008).
    16. Radu, F. Fundamental aspects of exchange bias effect (Ruhr- University Bochum, 2005).
    17. Ravelosona, D., Chappert, C., Mathet, V. & Bernas, H. Chemical order induced by ion irradiation in FePt (001) films. Appl. Phys. Lett. 76, 236– 238 (2000).
    18. Lai, C., Yang, C. & Chiang, C. Ion-irradiation-induced direct ordering of L10 FePt phase. Appl. Phys. Lett. 83, 4550–4552 (2003).
    19. Bernas, H. et al. Ordering intermetallic alloys by ion irradiation: A way to tailor magnetic media. Phys. Rev. Lett. 91, 077203 (2003).
    20. W. H. Meikljohn et al, Phys. Rev. 102(1956)p1413; Phys. Rev., 105(1957)p904.
    21. D. Mauri et al., J.Appl. Phys. 62(1987)p3047.
    22. Wei Zhang et al., Spin Hall Effects in Metallic Antiferromagnets. Phys. Rev. Lett. 113, 196602(2014)
    23. Peter F. Ladwig et al., Paramagnetic to antiferromagnetic phase transformation in sputterdeposited Pt–Mn thin films. J. Appl. Phys. vol. 94(2003)
    24. E. Kren, et al., Magnetic Structures and Exchange Interactions in the Mn-Pt System. Physical Review. vol. 171(1968)
    25. Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189-193 (2011).
    26. Liu LQ, Pai CF, Li Y, Tseng HW, Ralph DC, Buhrman RA. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science 336, 555-558 (2012).
    27. Bychkov YA, Rashba EI. OSCILLATORY EFFECTS AND THE MAGNETIC-SUSCEPTIBILITY OF CARRIERS IN INVERSION-LAYERS. Journal of Physics C-Solid State Physics 17, 6039-6045 (1984).
    28. Miron IM, Moore T, Szambolics H, Buda-Prejbeanu LD, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A, Gaudin G. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat Mater 10, 419-423 (2011).
    29. Hirsch JE. Spin Hall effect. Phys Rev Lett 83, 1834-1837 (1999).
    30. Dyakonov MI, Perel VI. CURRENT-INDUCED SPIN ORIENTATION OF ELECTRONS IN SEMICONDUCTORS. Phys Lett A A 35, 459 (1971).
    31. Zhang SF. Spin Hall effect in the presence of spin diffusion. Phys Rev Lett 85, 393-396 (2000).
    32. Kato YK, Myers RC, Gossard AC, Awschalom DD. Observation of the spin hall effect in semiconductors. Science 306, 1910-1913 (2004).
    33. Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S. Room-temperature reversible spin Hall effect. Phys Rev Lett 98, 156601 (2007).
    34. Liu LQ, Lee OJ, Gudmundsen TJ, Ralph DC, Buhrman RA. Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect. Phys Rev Lett 109, 096602 (2012).
    35. Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H. Layer thickness dependence of the current-induced effective field vector in Ta vertical bar CoFeB vertical bar MgO. Nat Mater 12, 240-245 (2013).
    36. Hayashi M, Kim J, Yamanouchi M, Ohno H. Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements. Phys Rev B 89, 144425 (2014).
    37. Liu L, Moriyama T, Ralph DC, Buhrman RA. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys Rev Lett 106, 036601 (2011).
    38. Pai CF, Liu LQ, Li Y, Tseng HW, Ralph DC, Buhrman RA. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl Phys Lett 101, 122404 (2012).
    39. Niimi Y, Morota M, Wei DH, Deranlot C, Basletic M, Hamzic A, Fert A, Otani Y. Extrinsic Spin Hall Effect Induced by Iridium Impurities in Copper. Phys Rev Lett 106, 126601 (2011).
    40. Niimi Y, Kawanishi Y, Wei DH, Deranlot C, Yang HX, Chshiev M, Valet T, Fert A, Otani Y. Giant Spin Hall Effect Induced by Skew Scattering from Bismuth Impurities inside Thin Film CuBi Alloys. Phys Rev Lett 109, 156602 (2012).
    41. Gu B, Sugai I, Ziman T, Guo GY, Nagaosa N, Seki T, Takanashi K, Maekawa S. Surface-Assisted Spin Hall Effect in Au Films with Pt Impurities. Phys Rev Lett 105, 216401 (2010).
    42. Laczkowski P, Rojas-Sanchez JC, Savero-Torres W, Jaffres H, Reyren N, Deranlot C, Notin L, Beigne C, Marty A, Attane JP, Vila L, George JM, Fert A. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy. Appl Phys Lett 104, 142403 (2014).
    43. Fujiwara K, Fukuma Y, Matsuno J, Idzuchi H, Niimi Y, Otani Y, Takagi H. 5d iridium oxide as a material for spin-current detection. Nat Commun 4, 2893 (2013).
    44. Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers. Nat Commun 5, 4655 (2014).
    45. Fan Y, Upadhyaya P, Kou X, Lang M, Takei S, Wang Z, Tang J, He L, Chang L-T, Montazeri M, Yu G, Jiang W, Nie T, Schwartz RN, Tserkovnyak Y, Wang KL. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat Mater 13, 699-704 (2014).
    46. Mellnik AR, Lee JS, Richardella A, Grab JL, Mintun PJ, Fischer MH, Vaezi A, Manchon A, Kim EA, Samarth N, Ralph DC. Spin-transfer torque generated by a topological insulator. Nature 511, 449 (2014).
    47. Rojas-Sanchez JC, Reyren N, Laczkowski P, Savero W, Attane JP, Deranlot C, Jamet M, George JM, Vila L, Jaffres H. Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces. Phys Rev Lett 112, 106602 (2014).
    48. Zhang W, Han W, Jiang X, Yang S-H, S. P. Parkin S. Role of transparency of platinum–ferromagnet interfaces in determining the intrinsic magnitude of the spin Hall effect. Nature Physics 11, 496-502 (2015).
    49. Pai CF, Y. O, Ralph DC, Buhrman RA. Dependence of the Efficiency of Spin Hall Torque on the Transparency of Pt-Ferromagnetic Layer Interfaces. arXiv:1411.3379
    50. Bhowmik D, You L, Salahuddin S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nat Nanotechnol 9, 59-63 (2014).

    QR CODE