研究生: |
葉哲瑋 Yeh, Che-Wei |
---|---|
論文名稱: |
具大面積自動化加工之奈米3D微影系統 Automatic Large Area Fabrication for Nano 3D Lithography System |
指導教授: |
傅建中
Fu, Chien-Chung |
口試委員: |
宋震國
Sung, Cheng-Kuo 鄭正元 Jeng, Jeng-Ywan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 奈米3D微影技術 、高速自動對焦 、疏油結構 、疏水結構 、結構陣列 |
外文關鍵詞: | High-speed Autofocus System, Omniphobic Surface, Structure Array |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文將開發具大面積自動化加工之奈米3D微影系統(Nano 3D Lithography, N3L),此系統採用波長為780nm的飛秒雷射,利用聲光調變器(Acousto-optic modulator, AOM)控制雷射光能量,搭配行程100毫米的XY位移平台,用於擴大加工範圍及拼接結構,此外在XY位移平台上,搭載行程1500微米之XY軸壓電平台及行程200微米之Z軸壓電平台,能快速、精準的加工奈米級的結構。
我們提出具高速自動對焦之系統,用於降低大面積加工產生的誤差,此系統是分析像素強度,搭配演算法縮短找尋對焦面的時間。此外透過不同位置的對焦面深度,分析玻璃基板的傾斜角,建立傾斜校正系統,補償基板傾斜及不平整造成的加工誤差。
利用此技術加工疏油及疏水結構,並進行結構路徑之優化,成功縮短部分零組件的加工時間及提高結構剛性,透過拼接的方式加工結構陣列,其陣列尺寸為3 mm×3 mm,展示具大面積自動化加工之功能。
This paper set out to develop automatic large area fabrication for Nano 3D Lithography. N3L system consist of a 780 nm femtosecond fiber laser, acousto-optic modulator and two kinds of specific stage. Acousto-optic modulator be used for controlling the laser power, and 100 mm travel range XY linear translation stage be used for expanding the fabrication range also for the structure splitting. In addition, install the 1500 μm travel range XY piezo stage and 200 μm travel range Z piezo stage on the XY linear translation stage, which are able to fabricate nanoscale structure fast and precisely.
We propose a high-speed autofocus system for reducing the errors in large area fabrication. This system shorten the time of finding focus plane by analyzing pixel intensity with algorithm. Furthermore, we build a tilt correction system which can compensate the slant and roughness of the substrate by analyzing the tilt angle of the substrate.
Finally, we fabricate omniphobic surface, shorten the fabrication time and improve the structure hardness by optimizing exposure path. Moreover, we demonstrated automatic large area fabrication for Nano 3D Lithography by fabricating 3 mm×3 mm omniphobic surface.
[1] Cumpston, B.H., et al., Two photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature, 1999. 398: p. 51-54
[2] Borisov, R.A., et al., Fabrication of three-dimensional periodic microstructures by means of two-photon polymerization. Appl. Phys., 1998. 67: p. 765-767.
[3] Sun, H.B., S. Matsuo, and H. Misawa, Three-dimensional photonic crystal structures achieved with two-photonabsorption photopolymerization of resin. Appl. Phys. Lett., 1999. 74: p. 786-788.
[4] Deubel, M., et al., Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater., 2004. 3: p. 444-447.
[5] Seet, K.K., et al., Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1μm. APPLIED PHYSICS LETTERS, 2006. 88.
[6] Grossman, N., et al., Investigation of optical properties of circular spiral photonic crystals. OPTICS EXPRESS, 2007. 15(20).
[7] A.Ostendorf and B.N.Chichkov, Two-photon polymerization: a new approach to micromachining, Photon. Spectra, 2006. 40: p. 72-80.
[8] Guo, R., et al., Micro lens fabrication by means of femtosecond two photon photopolymerization. Optical Society of America, 2006. 14: p. 810-816.
[9] Maruo, S., K. Ikuta, and H. Korogi, Force-Controllable, Optically Driven Micromachines Fabricated by Single-Step Two-Photon Microstereolithography. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003. 12.
[10] Maruo, S., K. Ikuta, and H. Korogi, Submicron manipulation tools driven by light in a liquid. APPLIED PHYSICS LETTERS, 2003. 82: p. 133-135.
[11] Lin, C.-L., et al., Multiplying optical tweezers force using a micro-lever. Optics Express, 2011. 19.
[12] Baldeck, P.L., et al., Optically driven Archimedes micro-screws for micropump applications:multiple blade design. Proc. SPIE, 2011. 8097: p. 809713/809711-809713/809715.
[13] Köhler, J., et al., Optical screw-wrench for interlocking 2PP-microstructures. Proc. of SPIE, 2016. 9764 97641E-1.
[14] Ovsianikov, A., et al., Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. Tissue Eng Regen Med, 2007: p. 443–449.
[15] Klein, F., et al., Two-Component Polymer Scaffolds for Controlled Three-Dimensional Cell Culture. Advanced Materials, 2011. 23: p. 1341-1345.
[16] Ovsianikov, A., et al., Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater, 2011. 7: p. 967-974.
[17] Stichel, T., et al., Compensation of spherical aberration influences for two-photon polymerization patterning of large 3D scaffolds. Applied Physics A, 2015. 121: p. 187-191.
[18] Göppert-Mayer, M., Über Elementarakte mit zwei Quantensprüngen. Annalen der Physik, 1931. 401(3): p. 273-294.
[19] Maruo, S., O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerizatio. Optics Letters, 1997. 22: p. 132-134.
[20] Lim, T.W., et al., Highly effective three-dimensional large-scale microfabrication using a continuous scanning method. Applied Physics A, 2008.
[21] Kato, J.-i., et al., Multiple-spot parallel processing for laser micronanofabrication. Applied Physics Letters, 2005. 86.
[22] Malinauskas, M., et al., Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area, in Micromachining and Microfabrication Process Technology Xiv, M.A. Maher, J.C. Chih, and P.J. Resnick, Editors. 2009, Spie-Int Soc Optical Engineering: Bellingham.
[23] Liao, W.-C., Micro-cone Structure Fabrication by Nano 3D Lithography, in NanoEngineering and MicroSystems. 2016, National Tsing Hua University.
[24] Hensel, R., et al., Wetting Resistance at Its Topographical Limit: The Benefit of Mushroom and Serif T Structures. Langmuir, 2013. 29: p. 1100-1112.
[25] Liu, T.L. and C.-J. Kim, Turning a surface superrepellent even to completely wetting liquids. SCIENCE, 2014. 346(6213).
[26] Zipfel, W.R., R.M. Williams, and W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnology, 2003. 21(1369 - 1377).
[27] Maruo, S. and S. Kawata, Two-Photon-Absorbed Near-Infrared Photopolymerization for Three-Dimensional Microfabrication. IEEE: Journal of Microelectromechanical Systems, 1998. 7(4).
[28] Hasegawa, T. and S. Maruo, Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures. IEEE, 2007.
[29] Maruo, S., T. Hasegawa, and N. Yoshimura, Single-anchor support and supercritical CO2 drying enable high-precision microfabrication of three-dimensional structures. OPTICS EXPRESS, 2009. 17.