簡易檢索 / 詳目顯示

研究生: 謝奇文
Chi-Wen, Hsieh
論文名稱: 基於掌骨影像之電腦化骨骼年齡判讀與成長模型之研究
The Study of Computerized Bone Age Assessment and Carpals Growth Model Based on Hand Images
指導教授: 鐘太郎
Tai-Lang, Jong
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 106
中文關鍵詞: 掌骨指骨腕骨骨骼年齡
外文關鍵詞: Hand, phalanx, carpal, bone age
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中提出了掌骨對骨骼年齡的相關研究與電腦化判讀技術。主要內容包括6大項。1. 利用比較掌骨幾何型態,逐步的逼近法,提出全自動的指骨年齡判讀系統,全自動的腕骨年齡判讀系統,且得到還可以接受的判讀結果。2. 利用在醫學上腕骨和指骨的生長特性,結合神經網路與模糊理論的指腕骨特徵年齡判讀系統。該系統可略提昇骨骼年齡的正確性,近乎在臨床實用階段。3. 同時也針對指骨的生長同步化做了統計分析,包含了各指節的相關係數計算,與電腦化與骨骼年齡的特徵迴歸分析,以提供中指為特徵的指骨年齡判讀系統更堅實的理論基礎。4. 除此外,我們也針對腕骨的特徵,包括幾何特徵,主成分分析,相關係數、腕骨的相對位置,作了基礎的研究。此結果可以提供腕骨生長的醫學基礎與應用之用。5. 我們也試圖利用的自創的假力模型,提出腕骨的成長模型,該模型利用物理上的彈性模型與動力學,計算時變的腕骨邊界的變化。利用彈性係數為概念的生長矩陣來描述生長狀態。除此外,我們也計算了各腕骨的相關力學能,做為生長描述的特徵。該模型不僅可作為骨骼年齡判讀,且可以預測,及回溯腕骨各骨區的幾何型態。我們認為本模型有物理,醫學和工程的整合意義與應用。6. 本論文也比較北美白人孩童資料庫 (GP),40年前的台灣孩童資料庫,與2000年後的台灣孩童資料庫的生長異同。從初步的結果得知,發現台灣孩童有一生長落後於GP標準的現象,也發現40年前的孩童有落後現今孩童的現象,但幅度不大,另外也統計了腕骨生長次序,得了一些有意義的醫學結果。


    This dissertation is focused on the study of the computer-assisted bone age assessment and the corresponding bone age statistics. The topics include the description of a fully automatic computerized bone age assessment procedure based on phalangeal ossification features, the growth synchronization of phalanxes based on the statistics of computerized features, and the quantitative assessment of carpal growth by growth factors. The study not only makes a correlation evaluation of phalanxes but supports direct evidence that a feature of middle finger could be used as a good index to describe the bone age. The dissertation also provides a survey to describe the relationship between chronological age and carpals’ shapes and relative positions in pediatrics. In addition, it also makes a computerized analysis of the relative position and geometric features of carpals versus chronological and bone age. The results of this study not only can support the fundamental bioinformatics of carpals of Taiwanese but also some significant features to make the computerized bone age assessment system more practical in pediatrics.
    Besides, the dissertation describes the construction of a carpal ossified model, and its applications to carpal bone age assessment and bone growth estimation procedures based on a fuzzy criterion and statistical analysis. The proposed growth matrices include the longitudinal and transverse descriptions of the increase rate of a bone in each one-year-old growth stage. The growth matrices can indicate the overall dynamic processes and trends of the ossification of each part of carpals. Combining the geometric features, we can obtain the carpal growth model that can cover many aspects and benefits for the analysis of the ossification.
    Some medical evidence of Taiwanese is discovered in the dissertation, too. The differences between North American and Taiwanese children are roughly identified. The growth sequence and geometric features of carpal bones have some obvious differences. The work could support the health care department to promote the quality of life for Taiwanese.

    Chinese Abstract…………………………………………………..…….…………………..i Abstract………………………………………………………………….………………….ii Acknowledgement…………………………………………………….…………………iii List of Contents……….………………………………………………….…………………iv List of Figures…………………………………………………………….………………vii List of Tables………….………………………………………………….………………xii Chapter 1 Introduction……………………………………………………………………...1 1.1 Background…………..……………………………………………..……………1 1.2 GP Method………………………………………………...………………………3 1.2.1 The Concept of Skeletal Age…….…………………….……………………..3 1.2.2 The Growth Status of the Right and Left Hand……………………………..4 1.3 TW Method…………………………………………………….………...………...5 1.4 The Comparison of GP with TW Method…………….………………...……….7 1.5 Review of Computer-Assisted Bone Age Assessment………………………..9 1.6 Contributions of This Dissertation………………….…………………….10 1.7 Dissertation Skeleton………………..…………………………….………….11 Chapter 2 Phalanx-Based Bone Age Assessment…..……………………..………….13 2.1 Overview…………………………………………………..………….……………...13 2.2 Preprocessing………………………………….………………….……...…………14 2.2.1 Left Hand Image Cropping.………………………..…….……………….…14 2.2.2 Angle Calibration and Heuristic Approach…………………….…………...15 2.2.3 Medius Image Selection by Heuristic Approach…………………………..16 2.3 Phalange Feature Extraction………………………….……………..…………….18 2.3.1 Physiological Features...………………………………………….…………18 2.3.2 Morphological Features……………………………………….……………..19 2.3.3 Feature Analysis……………………………………………………………22 2.4 Bone Age Assessment……………………………………..………….…………...24 2.5 The Study of Synchronized Growth of Phalanxes……………………………..28 2.5.1 Preprocessing………………………………………………………………….28 2.5.2 Feature Assessment………………………………..…………………………30 2.5.3 Correlation Coefficients Calculation………………..…….…………………..32 2.5.4 Regression Analysis…………………………………………………………...36 Chapter 3 Carpal-Based Bone Age Assessment………………..………………..……41 3.1 Overview………………………………………………………..………….………...41 3.2 Carpal Image Selection by Heuristic Approach………………………………...41 3.3 Carpals Segmentation……………………………………………………………..42 3.4 Correlation Coefficient Analysis of Geometric Features of Carpal …….…….43 3.5 Growth Differences between Female and Male Carpals……..………………..49 3.6 Motivation of the Bone Age Assessment Based on Fuzzy Theory…………...51 3.6.1 Fuzzy Bone Age Assessment Procedures………………...………………...51 3.6.2 Fuzzy Membership Functions -Type I…………………...…………………...51 3.6.3 Fuzzy Membership Functions -Type II………………...………….………….54 3.6.4 Results of PCA…………………………………………….…………………...55 3.6.5 Membership Functions Constructed by Principle Components……..…….56 3.6.6 Fuzzy Membership Functions -Type III……………………..……….……….57 3.6.7 Ratio-I………………………………………………………….……..…………57 3.6.8 Ratio-II…………………………………………………….…….……….……...59 3.6.9 Combination of All 29 Features………………………….……….….………61 3.6.10 Compactness-I and Compactness-II……………………………………….63 3.6.11 Comparison of the Assessment Results……………………..……..………64 3.6.12 Summary of Fuzzy CBA……………………………………………...…..66 3.7 Relative Position of Carpals Versus Chronological Age……………...….……..67 Chapter 4 Bone Age Assessment Based on Both Carpal and Phalanx Information.. 70 4.1 Concepts…………………………………………………….………..……..………70 4.2 Carpals Segmentation……………………………………..…………….…………70 4.3 Fuzzy Concept Classification…………………………..…………….………….71 4.4 Neural Network Classifier……………………………….…………………………72 4.5 Fuzzy Filter Based on Carpal Features………………..…………….......……… 72 4.6 Experimental Results………………………………….…………………….……...74 4.7 Summary...………………………………………….....…………………..…..…….76 Chapter 5 Constructing a Growth Model of Carpals based on Pseudo Force………79 5.1 Basic Concept-Pseudo Force Model……………..……………………………….79 5.2 Growth Factors and Features……………………..………………………………80 5.2.1 Longitudinal Spatial Growth…………………………………………………..81 5.2.2 Transverse Spatial Growth……………………………………………………81 5.3 Simulation………………………………………..……………………….………….81 5.4 Carpal Contour Prediction and Recall……………..………….…………..………83 5.5 Pseudo Energy Features………………………..…………………………………84 5.6 Verification of the Estimation Patterns…………….…………………………….86 Chapter 6 Database Effect of Bone Age Development………………………..…..……...89 6.1 Literature Surveys…………………………………………………………………..89 6.2 Statistics of Carpals…………………………………….……..……………………89 6.2.1 Geometric Feature Extraction…………………………...…………………..89 6.2.2 Bone Sequence Analysis……………………….……………………………..94 6.2.3 Discussion………………………………………………..……………………95 6.3 Database Comparison - Today and Four Decades Ago………………………95 Chapter 7 Conclusions…..……………………………………..………………………...98 References……………………………………………………………………………...101 Appendix…………………………………………………………......……………………105

    1. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, Stanford, California.
    2. Mora S, Boechat MI, Pietka E, Huang HK, Gilsanz V (2001) Skeletal age determinations in children of European and African descent: applicability of the Greulich and Pyle standards. Pedia Res 50: 624-628.
    3. Gilli G (1996) The assessment of skeletal maturation. Hormone Res 45: 49-52 Suppl. 2.
    4. Koc A, Karaoglanoglu M, Erdogan M, Kosecik M, Cesur Y (2001) Assessment of bone ages: is the Greulich-Pyle method sufficient for Turkish boys? Pediatrics International 43 (6): 662-665.
    5. Van Teunenbroek A, Stijnen T, Otten B, KeizerSchrama SD, Naeraa RW, RongenWesterlaken C, Drop S (1996) A regression method including chronological and bone age for predicting final height in Turner's syndrome, with a comparison of existing methods. Acta Paedia 85 (4): 413-420.
    6. Tanner JM, Whitehouse RH, Marshall WA (1983) Assessment of skeletal maturity and prediction of adult height (TW2 Method). 2nd ed., Academic Press.
    7. Tanner JM, Healy MJR, Goldstein H, Cameron N (2001) Assessment of skeletal maturity and prediction of adult height (TW3 Method). 3rd ed., Saunders, London.
    8. Molinari L, Gasser T, Largo RH (2004) Bone age: RUS/CB and gender differences of percentiles for score and score increments. Ann Hum Biol 31: 421-435.
    9. Aja-Fernandez S, de Luis-Garcia R, Martin-Fernandez MA, Alberola-Lopez C (2004) A computational TW3 classifier for skeletal maturity assessment. A computing with words approach. J Biomed Inf 37 (2): 99-107.
    10. Malina RM, Beunen GP (2002) Assessment of skeletal maturity and prediction of adult height (TW3 method). Am J Hum Biol 14 (6): 788-789.
    11. Ashizawa K, Kumakura C, Zhou X, Fin F, Cao J (2005) RUS skeletal maturity of children in Beijing. Ann Hum Bio 32 (3): 316-325.
    12. Tristan A, Arribas JI (2005) A radius and ulna skeletal age assessment system. Machine Learning for Signal Processing, IEEE Workshop: 221 – 226.
    13. Proos LA, Lonnerholm T, Jonsson B, Tuvemo T (2006) Can bone age determination provide criteria for growth hormone treatment in adopted girls with early puberty? A comparison of the Greulich-Pyle and the Tanner-Whitehouse 2 methods. Ups J Med Sci 111: 117-129.
    14. Milner GR, Levick RK, Kay R (1986) Assessment of bone ages: a comparison of the Greulich and Pyle, and the Tanner and Whitehouse methods. Clin Radiol 37: 119-212.
    15. Frisch H, Riedl S, Waldhor T (1996) Computer-aided estimation of skeletal age and comparison with bone age evaluations by the method of Greulich-Pyle and Tanner-Whitehouse. Pedia Radiol 26 (3): 226-231.
    16. King DG, Steventon DM, Osullivan MP, Cook AM, Hornsby VPL, Jefferson IG, King PR(1994) Reproducibility of bone ages when performed by radiology registrars- an audit of Tanner-and-Whitehouse-II versus Greulich-and Pyle methods. Bri J Radiol 67 (801): 848-851.
    17. Ryan PJ, Spector TP, Blake GM, Doyle DV, Fogelman I (1993) A comparison of reference bone-mineral density-measurements derived from 2 sources- referred and population-based. Bri J Radiol 66 (792): 1138-1141.
    18. Vignolo M, Milani S, Cerbrllo G (1992) FELS, Greulich-Pyle, and Tanner-Whitehouse bone-age assessments in a group of Italian children and adolescents. Am J Hum Biol 4 (4): 493-500.
    19. Aicardi G, Vignolo M, Milani S, Naselli A, Magliano P, Garzia P (2000) Assessment of skeletal maturity of the hand-wrist and knee: a comparison among methods. Am J Hum Biol 12 (5): 610-615.
    20. Bulla RK, Edwardsa PD, Kempb PM, Fryc S, Hughesc IA (1999) Bone age assessment: a large scale comparison of the Greulich and Pyle, and Tanner and Whitehouse (TW2) methods. Arch Dis Child 81: 172-173.
    21. Sato K, Mito T, Mitani H (2001) An accurate method of predicting mandibular growth potential based on bone maturity. Am J Orthod Dentofac Orthop 120: 286-293.
    22. Malina RM, Reyes MEP, Eisenmann JC, Horta L, Rodrigues J, Miller R (2000) Height, mass and skeletal maturity of elite Portuguese soccer players aged 11-16 years. J Sports Sci 18 (9): 685-693.
    23. Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee R (2000) Skeletal growth estimation using radiographic image processing and analysis. IEEE T Inf Technol Biomed 4: 292-297.
    24. Mahmoodi S, Sharif BS, Chester EG, Owen JP, Lee R (1997) Automated vision system for skeletal age assessment using knowledge based techniques. IPA97 2: 809-813.
    25. Marques Da Silva AM, Delgado Olabarriaga S, Dietrich CA, Schmitz CAA (2001) On determining a signature for skeletal maturity. CGIP2001 Proceedings 246-251.
    26. Pietka E (1995) Computer-assisted bone age assessment based on features automatically extracted from a hand radiograph. Comp Med Imag Graph 19 (3): 251-259.
    27. Hsieh CW, Chu BC, Jong TL, Tiu CM (2005) Bone age classification using fuzzy concept with support vector machine neural network.12th International Conference on BioMedical Engineering (ICBME 2005), 1A4-05, Singapore, Singapore.
    28. Michael DJ, Nelson AC (1989) HANDX: a model-based system for automatic segmentation of bones from digital hand radiographs. IEEE Trans Med Imag 8 (1): 64-69.
    29. Ilich JZ, Hangartner TN, Skugor M, Roche AF, Goel PK, Matkovic V (1996) Skeletal age as a determinant of bone mass in preadolescent females. Skel Radiol 25 (5): 431-439.
    30. Hsieh CW, Chang CH, Jong TL, Tiu CM (2003) The assessment of wrist radiography features for bone age estimation. Image and Recog 9 (2): 78-128.
    31. Pietka E, Kaabi L, Kuo ML, Huang HK (1993) Feature extraction in carpal-bone analysis. IEEE T Med Imaging 12: 616-620.
    32. Chu BC (2005) An investigation of computerized automatic bone age assessment system based on carpal and phalanx. Master Thesis, EE NTHU.
    33. Huang MJ (2006) The construction of a carpal ossified model and its applications to carpal bone age assessment and bone growth estimation based on fuzzy criterion and statistics analysis. Master Thesis, EE NTHU.
    34. Hsieh CW, Jong TL, Chou YH, Tiu CM (2007) Computerized carpal bone geometric feature for bone age estimation. Chin Med J (Accepted in Nov., 2006)
    35. Fan BC, Hsieh CW, Jong TL, Tiu CM (2001) Automatic bone age estimation based on carpal bone images—a preliminary report. Chin Med J 64: 203-208.
    36. Tiu CM, Hsieh CW, Jong TL (2001) The computerized carpal statistics for bone age estimation. Image and Recog 3: 94-102.
    37. Wu MJ, Hsieh CW, Jong TL, Tiu CM, Chen CH (2000) Bone age assessments based on carpal bone area and shape features. CVGIP2000 2: 41-48, Kaohsiung.
    38. Fan BC, Hsieh CW, Jong TL, Tiu CM (1999) Computerized bone age estimation using the carpal-bone images. CVGIP99 112-119, Taipei.
    39. Pietka E, Gertych A, Pospiech S, Cao F, Huang HK, Gilsanz V (2001) Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE T Med Imag 20: 715-729.
    40. Pietka E, Pospiech S, Gertych A, Cao F, Huang HK, Gilsanz V (2001) Computer automated approach to the extraction of epiphyseal regions in hand radiographs. J Digit Imag 14: 165-172.
    41. Pietka E, McNitt-Gray MF, Kuo ML, Huang HK (1991) Computer-assisted phalangeal analysis in skeletal age assessment. IEEE T Med Imag 10: 44-49.
    42. Pietka E, Huang HK (1995) Epiphyseal fusion assessment based on wavelets decomposition analysis. Comp Med Imag Graph 19 (6): 465-472.
    43. Chen JH (2002) A computerized skeleton age assessment based on phalangeal image and neural network approach. Master Thesis, EE NTHU.
    44. Chang CH (2003) An investigation of computerized automatic bone age assessment system based on phalangeal image features. Master Thesis, EE NTHU.
    45. Hsieh CW, Jong TL, Chang CH (2003) An investigation of computerized automatic bone age assessments based on phalanges image features. CVGIP03, Hsinchu.
    46. Vidulich L, Norris SA, Cameron N, Pettifor JM (2006) Differences in bone size and bone mass between black and white 10-year-old South African children. Osteopo Int 17: 433-440.
    47. Hsieh CW, Jong TL, Tiu CM (2007) Bone age estimation based on phalangeal information with fuzzy constrain of carpals. Med Bio Eng Com (Accepted in Dec., 2006)
    48. Hsieh CW, Jong TL (2007) Carpal growth status description using the pseudo elastic modulus concept. Physiol Meas (Submitted in Dec.,2006)
    49. Hsieh CW, Jong TL (2006) Carpal ossified process using pseudo-force model description. The Japan-Taiwan Symposium on Simulation in Medicine. Tsukuba, Japan.
    50. Johnston, F. E. & Jahina, S. B. (1965) The contribution of the carpal bones to the assessment of skeletal age. Am. J. Phys. Anthropol.23: 349-354.
    51. Marks, G. C., Habicht, J.-P. & Mueller, W. H. (1989) Reliability, dependability and precision of anthropometric measurements. The Second National Health and Nutrition Examination Survey 1976-1980. Am. J. Epidemiol.130: 578-587.
    52. Rivera, J. A., Martorell, R., Ruel, M., Habicht, J.-P & Haas, J. (1995) Nutritional supplementation during preschool years influences body size and composition of Guatemalan adolescents. J. Nutr. 125: 1078S-1089S.
    53. Hsieh CW, Jong TL, Tiu CM (2003) The phalangeal morphological characteristics for bone age recognition. 13th IEEE-NPSS real time conference 2003, Montreal, Canada.
    54. Pietka E, Gertych A, Pospiech-Kurkowska S, Cao F, Huang HK, Gilzanz V (2004) Computer-assisted bone age assessment: graphical user interface for image processing and comparison. J Digit Imag 17: 175-188.
    55. Pietka E, Pospiech-Kurkowska S, Gertych A, Cao F (2003) Integration of computer assisted bone age assessment with clinical PACS. Comput Med Imag Graph 27: 217-228.
    56. Cao F, Huang HK, Pietka E, Gilsanz V, Dey PS, Gertych A (2002) An image database for digital hand atlas and its application to other PACS-based CAD servers. Radiology 225: 139-139.
    57. Cao F, Huang HK, Pietka E, and Gilsanz V (2000) Digital hand atlas and web-based bone age assessment: system design and implementation. Comp Med Imag Graph 24: 297-307.
    58. Wu CH (2006) Phalanxes analysis and selection based on correlation and regression analysis for bone age development. Master Thesis, EE NTHU.
    59. Hsieh CW, Jong TL, Tiu CM (2006) Computerized epiphysis analysis using Gabor Filter with neural network. ISBME2006 107-110, Bangkok.
    60. Hsieh CW, Chang CH, Jong TL, Tiu CM (2003) The phalanges ossified process enhancement and assessment for bone age estimation. WC2003, Sydney, Australia.
    61. Wu CH, Hsieh CW, Jong TL (2006) Phalanxes correlation study based on morphological statistics of ossification. CVGIP06: 875-877, Taoyuan.
    62. Hsieh CW, Jong TL, Tiu CM (2002) Skeleton age assessment using computerized phalanges-based morphological characteristics. Conf Bio Med Eng: D1-23, Kaohsiung.
    63. Chang CH, Hsieh CW, Jong TL, Tiu CM (2003) A fully automatic computerized bone age assessment procedure based on phalange ossification analysis. CVGIP03: 463-468, Kinmen.
    64. Hsieh CW, Jong TL, Chang CH, Chen CH, Tiu CM (2002) The phalanges-based morphological features for skeleton age assessments. CVGIP02: 729-733, Hsinchu.
    65. Fan BC (1999) Computerized bone age estimation using the carpal-bone images. Master Thesis, EE NTHU.
    66. Hsieh CW, Huang MJ, Jong TL (2006) Growth evaluation based on morphological description of carpals. IFMBE proc 14: 2212-2214.
    67. Huang MJ, Hsieh CW, Jong TL, Tiu CM (2006) The study of carpal bone age assessment based on fuzzy growth model. CVGIP2006: 519-524, Taoyuan.
    68. Hsieh CW, Jong TL, Tiu CM (2006) The preliminary survey of relative position of carpals versus chronological age in pediatrics. ISOBME06, Taipei.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE