簡易檢索 / 詳目顯示

研究生: 鄭凱嶸
Kai-Jung Cheng
論文名稱: Study on the TiO2-Pt Nanocomposite Thin Films for Resistance Random Access Memory Applications
二氧化鈦-白金奈米複合薄膜應用於非揮發性電阻式記憶體之特性研究
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 62
中文關鍵詞: 二氧化鈦白金奈米複合薄膜電阻式記憶體
外文關鍵詞: TiO2, Pt, Nanocomposite, Resistance Random Access Memory
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Negative resistance behavior and reproducible resistance switching were found in polycrystalline TiO2 films. The TiO2 thin films were deposited on Pt/Ti/SiO2/Si substrates at room temperature by radio frequency (rf) reactive magnetron sputtering using a 4N Ti target. A PtOx layer was sputtered in the middle of the TiO2 thin films. Then, the PtOx was reduced to form Pt nanocrystals by RTN 500℃, 3min. The crystalline phase and microstructure of TiO2 thin films embedded with Pt nanoparticles were investigated by x-ray diffraction (XRD), transmission electron microscopy (TEM), Henergy-dispersive x-ray spectroscopyH (EDX), and field-emission scanning electron microscopy (FE-SEM). Electrical properties of the Pt/ TiO2- Pt nanocomposite/ Pt capacitor were measured by Keithley 4200 Semiconductor Parameter Analyzer.
    Our result shows that the thin films exhibit the bipolar resistive switching characteristics. The endurance and retention properties of pure TiO2 thin films were not satisfying, and these drawbacks were greatly improved by embedding the Pt nanocrystals into the TiO2 thin films. The embedded Pt nanocrystals could effectively reduce the fluctuation of set voltage, reset voltage, set current, and reset current, especially in the case of depositing the PtOx for 1min. The retention measurement exhibits the improvement of performance with the increasing Pt nanocrystals until the case of depositing PtOx for 4min. In the case, a continuous layer of Pt was formed which affects the resistance switching and causes the I-V characteristics become abnormal. Not only both of the HRS and LRS were below 100Ω with a low ratio of HRS/ LRS, but also a bad retention was measured.
    Therefore, the embedding of Pt nanocrystals with proper and uniform size could greatly improve the property of resistance switching of TiO2 thin films.


    UABSTRACTU i UCONTENTSU ii ULIST OF FIGURESU iv ULIST OF TABLESU vii UChapter 1U UIntroductionU 1 UChapter 2U ULiteratureU 3 U2.1U UConventional non-volatile memoriesU 3 U2.2U UEmerging non-volatile memoriesU 4 U2.2.1U UFeRAMU 4 U2.2.2U UMRAMU 4 U2.2.3U UPCRAMU 5 U2.2.4U URRAMU 5 U2.3U UMechanism of RRAMU 7 U2.3.1U UPerovskite oxidesU 7 U2.3.2U UTransition metal oxidesU 9 U2.3.3U UChalcogenide materialsU 10 U2.4U UPotential of non-volatile memoriesU 11 U2.4.1U UProgramming voltageU 11 U2.4.2U UResistance ratioU 11 U2.4.3U UWrite/ Erase timeU 12 U2.4.4U UDevice scalingU 12 U2.4.5U UEnduranceU 12 U2.4.6U URetentionU 13 UChapter 3U UExperimental proceduresU 22 U3.1U UMIM variable resistor fabricationU 22 U3.1.1U USubstrate preparationU 22 U3.1.2U UTiO2 thin film depositionU 22 U3.1.3U UTiO2 thin film embedded with PtOx thin layerU 22 U3.1.4U UThermal treatment and top electrode depositionU 23 U3.2U UProperty analysisU 24 U3.2.1U UFilm thicknessU 24 U3.2.2U UCrystalline structureU 24 U3.2.3U UElectrical characterizationU 24 UChapter 4U UResults and DiscussionU 28 U4.1U UPreliminary study of TiO2 thin films in RRAMU 28 U4.2U UFilm thickness and crystalline structureU 29 U4.3U UMorphology of embedded Pt nanocrystalsU 30 U4.4U UChemical analysis by EDXU 31 U4.5U UElectrical propertyU 31 U4.5.1U UBipolar resistance switchingU 31 U4.5.2U UEndurance measurementU 33 U4.5.3U UAnalysis of endurance dataU 34 U4.5.4U URetention measurementU 36 UChapter 5U UConclusionU 58 UREFERENCEU 59

    [1] Future Emerging New Memory Technologies
    [2] I. G Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. –S. Suh, J. C. Park, IEDM Tech. Dig., 587-590, (2005).
    [3] B. J. Choi, D. S. Jeong, and S. K. Kim, J. Appl. Phys. 98, 033715, (2005).
    [4] http://www.pcmag.com/encyclopedia_term/0,,t=feram&i=43095,00.asp
    [5] http://www.pcmag.com/encyclopedia_term/0,,t=mram&i=47324,00.asp
    [6] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, “HStatus and Outlook of Emerging Nonvolatile Memory TechnologiesH,” IEEE, (2004)
    [7] D. R. Lamb and P. C. Rundle, Br. J. Appl. Phys. 18, 29-32, (1967).
    [8] S.Q. Liu, N. J. Wu, and A. Ignatiev, “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Appl. Phys. Lett. 76, 2749, (2000).
    [9] http://en.wikipedia.org/wiki/RRAM
    [10] A. Beck, J. G Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications” Appl. Phys. Lett. 77, 139, (2000)
    [11] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, and A. Beck, “Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO single crystals” Appl. Phys. Lett. 78, 3738, (2001)
    [12] A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, Y. Y. Xue and C. W. Chu, “Field-driven hysteretic and reversible resistive switch at the Ag/ Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett. 83, 957, (2003).
    [13] A. Sawa, T. Fujii, M. Kawawaki, and Y. Tokura “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Appl. Phys. Lett. 85, 4073, (2004).
    [14] Hsu, S.T.; Zhuang, W.W.; Li, T.K.; Pan, W.; Ignatiev, A.; Papagianni, C.; Wu, N.J.;
    Non-Volatile Memory Technology Symposium, 2005.
    [15] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, “Reproducible resistance switching in polycrystalline NiO films,” Appl. Phys. Lett. 85, 5655, (2004).
    [16] B.J. Choi, D.S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” J. Appl. Phys. 98, 033715, (2005).
    [17] G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys. 33, 1129, (1970).
    [18] K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett 88, 075508, (2002).
    [19] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells,” Appl. Phys. Lett. 80, 2997, (2002).
    [20] Liping Ma, Jie Liu, Seungmoon Pyo, and Yang Yang, “Organic bistable light-emitting devices,” Appl. Phys. Lett. 80, 362, (2002).
    [21] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生, “先進記憶體簡介”,國研科技創刊號,2004年。
    [22] Gerhard Muller, Thamos Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, IEEE (2004).
    [23] 劉志益,曾俊元,”電阻式非揮發性記憶體之近期發展”。
    [24] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hus, M. Tajiri, A. Shimaoka, K. Inoue, T, Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, in IEDM Tech. Dig. 193 (2002).
    [25] 高明哲,”產要要聞”,2004年研究報告。
    [26] B. J. Choi, D. S. Jeong, and S. K. Kim, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition.” Appl. Phys. Lett. 98, 033715, (2005).
    [27] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi, “Identification of a determining parameter for resistive switching of TiO2 thin films.” Appl. Phys. Lett. 86, 262907, (2005).
    [28] M. Fujimoto, H. Koyama, Y. Hosoi, K. Ishihara, and S. Kobayashi, Jpn. J. Appl. Phys. Part 2 45, L312, (2006).
    [29] M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, and N. Awaya, Appl. Phys. Lett. 89, 223509, (2006).
    [30] Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T. Nakano, S. Ohnishi, N. Awaya, I. H. Inoue, H. Shima, H. Akinaga, H. Takagi, H. Akoh, and Y. Tokura, Tech. Dig. - Int. Electron Devices Meet. 2006, 793.
    [31] Chikako Yoshida, Kohji Tsunoda, Hideyuki Noshiro, and Yoshihiro Sugiyama, “High speed resistive switching in Pt/TiO2 /TiN film for nonvolatile memory application” Appl. Phys. Lett. 91, 223510, (2007).
    [32] Herbert Schroeder and Doo Seok Jeong, “Resistive switching in a Pt/TiO2 /Pt thin film stack- a candidate for a non-volatile ReRAM.” Microelectronic Engineering 84 (2007) 1982- 1985.
    [33] T. W. Hickmott, “Impurity Conduction and Negative Resistance in Thin Oxide Films” J. Appl. Phys. 35, 2118, (1964).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE