研究生: |
郭爵源 Chueh-Yuan Kuo |
---|---|
論文名稱: |
野生株與突變株仙人掌桿菌幾丁質酵素之結構與功能研究 Crystal structure and functional study of wild type and mutated Bacillus cereus NCTU2 chitinase |
指導教授: |
陳俊榮
Chun-Jung Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 仙人掌桿菌幾丁質酵素 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
幾丁質,一種由N-acetyl-D-glucosamine (GlcNAc) 經β-(1,4)鍵結而成的聚合務,廣泛地分佈在自然界中,是構成多數黴菌細胞壁、昆蟲外骨骼、甲殼素動物的主要成份,也存在於軟體動物類、腔腸動物類、線蟲類及原生動物類中。在大多數的生物有機體中,包括病毒、細菌、真菌、昆蟲、高等植物及動物都利用幾丁質酵素分解幾丁質後來取得碳和氮。屬於醣類水解型酵素18家族之仙人掌桿菌幾丁質酵素NCTU2,其基因內含一個27個胺基酸的訊息胜肽 (signal peptide) 與一個333個胺基酸的成熟蛋白。經過胺基酸多重比對後,發現Glu145及Tyr227為ChiNCTU2中參與催化反應的重要胺基酸。ChiNCTU2與其突變株E145Q之分子量為36 KDa,利用氣相擴散法的hanging drop method以含有zinc acetate、polyethene glycerol 8000及solium cacodylate的母液,將蛋白成功地長成晶體。經X-ray繞射後得到ChiNCTU2晶體解析度為1.2 Å, 晶格之空間群 (space group) 為P21,其參數為a = 50.789 Å, b = 48.788 Å , c = 66.867 Å。E145Q之晶體解析度為1.49 Å, 晶格之空間群 (space group) 為P1, 其參數為a = 61.306 50.820 Å, b =72.888 Å and c = 76.343 Å。ChiNCTU2與E145Q分別以多波長非尋常散射法(multiwavelength anomalous dispersion method ) 及分子置換法 (molecular replacement method) 解出其結構。ChiNCTU2之結構為單元體,而E145Q 結構之晶體堆積為四元體。 ChiNCTU2之蛋白質結構由12個α-helices 與 10 個 β-sheets所組成,在其活性區內,有五個胺基酸Asp143、Glu145、Glu190、Gln225 及 Tyr227與鋅原子鍵結。經由DNS (3,5-Dinitrosalicylic acid) 測試酵素產物生成量後,證明鋅原子鍵結在活性區內,會造成酵素活性降低。將二元體ChiNCTU2與E145Q分子結構做重疊(superimpose),發現殘基E145與Q145在角度上有明顯的差別, 而殘基Q145深埋進催化區內的現像,能輔助說明E145Q活性喪失的原因。我們也利用DNS (3,5-Dinitrosalicylic acid)與幾丁二醣反應後, 測量產物之OD540吸收值,證明S.marcescens ChiA的chitin_binding domain 能幫助酵素催化水解膠狀幾丁質,並且提高酵素的水解速率。在與其他屬於醣類水解型酵素18家族之幾丁質酵素,做序列及結構比對後,發現ChiNCTU2為微生物幾丁質酵素中分子量最小的一種。
Chitin, a β-(1,4)-linked polymer of N-acetyl D-glucosamine (GlcNAc), is widely distributed in nature, particularly as a structural polysaccharide in fungal cell walls in the exoskeleton of arthropods, the outer shell of crustaceans, nematodes, etc. Chitinases which hydrolyze chitin as carbon and nitrogen nutrient, occur in a wide range of organisms include in viruses, bacteria, fungi, insects, higher plants, and animals. A gene of family 18 chitinase from Bacillus cereus NCTU2 encodes a signal peptide (27 amino acids) and a mature protein (333 amino acids), The gene of family 18 chitinase from Bacillus cereus NCTU2 was constructed in pET-22b(+) and over-expressed by E. coli BL21 (DE3) strain.. Amino acid multi-alignment reveals that E145 and Y227 are the potential residues mediating the catalytic function of ChiNCTU2. ChiNCTU2 and mutant E145Q of MW 36 kDa have been crystallized using the hanging-drop vapor diffusion method with solution consisted of polyethene glycerol 8000、sodium cacodylate and zinc acetate dihydrate. According to diffraction of ChiNCTU2 crystals at resolution 1.20 Å, the unit cell belongs to space group P21 and has parameters a = 50.789 Å, b = 48.788 Å and c = 66.867 Å. And E145Q crystal at resolution 1.49, the unit cell belongs to space group P1 and has parameters a = 61.306 50.820 Å, b =72.888 Å and c = 76.343 Å. The protein structure of ChiNCTU2 is monomer by using multiwavelength anomalous dispersion method and the crystal packing of E145Q is tetramer by using molecular replacement method. The structure of ChiNCTU2 comprises 12 α-helices and 10 β-sheets . Five residues Asp143、Glu145、Glu190、Gln225 and Tyr227 bind with zinc atoms in the catalytic domain of ChiNCTU2 protein structure. We proved that zinc atoms will cause declined activity of ChiNCTU2 by detecting the amount of chitobioside using DNS (3,5-Dinitrosalicylic acid) .We find an angular difference between residue E145 and Q145 when doing superimposition with dimer form ChiNCTU2 and E145Q protein structures reveals the declined activity of mutant E145Q. We also find that S.marcescens ChiA has greater catalytic velocity than Bacillus cereus chitinase when interact with colloidal chitin after doing DNS (3,5-Dinitrosalicylic acid) experiment .After comparing sequences and structures with other 18 family chitinase, we discover that ChiNCTU2 is the smallest protein among microbe chitinases.
第五章 參考文獻
1. Aronson, N. N., Blanchard, C. J. and Madura, J. D. (1997) Homology modeling of glycosyl hydrolase family 18 enzymes and proteins. J. Chem. Inf. Comput. Sci. 37, 999-1005
2. Mabuchi, N. and Araki, Y. (2001) Cloning and sequencing of two genes encoding chitinases A and B from Bacillus cereus CH. Can. J. Microbiol. 47, 895-902
3. Shu-yi Wang, Shaw-jye Wu, Thottappilly, G., Locy, R. D. and Singh, N. K. (2001) Molecular cloning and structural analysis of the gene encoding Bacillus cereus exochitinase Chi36. Journal of Bioscience and Bioengineering 92, 59-66
4. Vaaje-Kolstad, G., Vasella, A., Peter, M. G., Netter, C., Houston, D. R., Westereng, B., Synstad, B., Eijsink, V. G. H. and Van Aalten, D. M. F. (2004) Interactions of a family 18 chitinase with the designed inhibitor HM508 and its degradation product, chitobiono-δ-lactone. The Journal of Biological Chemistry 279, 3612-3619
5. Merzendorfer, H. and Zimoch, L. (2003) -Review- Chitin metabolism insects: structure, function and regulation of chitin synthases and chitinase. The Journal of Experimental Biology 206, 4393-4412
6. Ikegami, T., Okada, T., Hashimoto, M., Seino, S.,Watanabe, T. and Shirakawa, M. (2000) Solution structure of the chitin-binding domain of Bacillus circulansWL-12 chitinase A1. The Journal of Biological Chemistry 275, 13654-13661
7. Wiwat, C., Siwayaprahm, P. and Bhumiratana, A. (1999) Purification and characterization of chitinase from Bacillus circulans No.4.1. Current Microbiology 39, 134-140 8. Papanikolau, Y., Prag, G., Tavlas, G., Vorgias, C. E., Oppenheim, A. B. and Petratos, K. (2001) High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry 40, 11338-11343
8. Papanikolau, Y., Prag, G., Tavlas, G., Vorgias, C. E., Oppenheim, A. B. and Petratos, K. (2001) High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry 40, 11338-11343
9. Brameld, K. A. and Goddard III,W. A. (1998) Substrate distortion to a boat conformation at subsite –1 is critical in the mechanism of family 18 chitinases. J. Am. Chem. Soc. 120, 3571-3580 10. Synstad, B., Gåseidnes, S., Van Aalten, D. M. F., Vriend, G., Nielsen, J. E. and Eijsink, V. G. H. (2004) Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. Eur. J. Biochem. 271, 253-262
10. Synstad, B., Gåseidnes, S., Van Aalten, D. M. F., Vriend, G., Nielsen, J. E. and Eijsink, V. G. H. (2004) Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. Eur. J. Biochem. 271, 253-262
11. 溫智民,仙人掌桿菌中幾丁質酵素的選殖與表現研究,國立交通大學應用化學研究所,2002
12. 吳岳進,基因改造黏質沙雷氏桿菌幾丁質酵素之特性,國立交通大學應用化學研究所,2002
13. Tews, I., Van Scheltinga, A. C. T., Perrakis, A.,Wilson, K. S. and Dijkstra, B.W. (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. J. Am. Chem. Soc. 119, 7954-7959
14. Van Aalten, D. M. F., Komander, D., Synstad, B., Gåseidnes, S. Peter, 46 M. G. and Eijsink, V. G. H. (2001) Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Biochemistry 98, 8979-8984. 15. Fukamizo, T. (2000) Chitinolytic enzyme: catalysis, substrate binding, and their application. Curr Protein Pept Sci. 1, 105-24.
15. Fukamizo, T. (2000) Chitinolytic enzyme: catalysis, substrate binding, and their application. Curr Protein Pept Sci. 1, 105-24.
16. Yaw-Kuen Li, Jiunly Chir, Tanaka, S. and Fong-Yi Chen (2002) Identification of the general acid/base catalyst of a family 3 β- glucosidase from Flavobacterium meningosepticum. Biochemistry 41, 2751-2759.
17. Van Scheltinga, A. C. T., Armand, S., Kalk, K. H., Isogai, A., Henrissat, B. and Dijkstra, B. W. (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/ lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34, 15619-15623.
18. Lai, E. C. K. andWithers, S. G. (1994) Stereochemistry and kinetics of the hydration of 2-acetamido-D-glucal by β-Nacetylhexosaminidases. Biochemistry 33, 14743-14749
19. Kobayashi, S., Kiyosada, T. and Shin-ichiro Shoda (1996) Synthesis of artifical chitin: irreverisible catalytic behavior of a glycosyl hydrolase through a transition state analogue substrate. J. Am. Chem. Soc. 118, 13113-13114
20. Fujita, M., Shin-ichiro Shoda, Haneda, K., Inazu, T., Takegawa, K. and Yamamoto, K. (2001) A novel disaccharide substrate having 1,2-oxazoline moiety for detection of transglycosylating activity of endoglycosidases. Biochimica et Biophysica Acta 1528, 9-14
21. Fukamizo, T., Sasaki, C., Schelp, E., Bortone, K. and Robertus, J. D. (2001) Kinetic properties of chitinase-1 from the fungal pathogen Coccidioides immitis. Biochemistry 40, 2248-2454
22. Knapp, S., Vocadlo, D., Gao, Z., Kirk, B., Lou, J. andWithers, S. G. (1996) NAG-thiazoline, an N-acetyl-β-hexosaminidase inhibitor that implicates acetamido participation. J. Am. Chem. Soc. 118, 6804-6805 22. Fukamizo, T., Sasaki, C., Schelp, E., Bortone, K. and Robertus, J. D. (2001) Kinetic properties of chitinase-1 from the fungal pathogen Coccidioides immitis. Biochemistry 40, 2248-2454
23. Matthews, B.W. J. Mol. Biol 33, 491-497 (1968)
24. Drenth, Jan. Principals of Protein X-ray Crystallography (1994), p.71
25. A.T. Brunger, The Free R Value: a Novel Statistical Quantity for Assessing the Accuracy of Crystal Structures, Nature 355, 472-474 (1992)
26. N.S. Pannu and R.J. Read, Improved structure refinement through maximum likelihood, Acta Cryst. A52, 659-668 (1996)
27. P.D. Adams, N.S. Pannu, R.J. Read and A.T. Brunger, Cross-validated Maximum Likelihood Enhances Crystallographic Simulated Annealing Refinement, Proc. Natl. Acad. Sci. USA 94, 5018-5023 (1997)
28. A.T. Brunger, J. Kuriyan and M. Karplus, Crystallographic R factor Refinement by Molecular Dynamics, Science 235, 458-460 (1987)
29. A.T. Brunger, A. Krukowski and J. Erickson, Slow-Cooling Protocols for Crystallographic Refinement by Simulated Annealing, Acta Cryst. A46, 585-593 (1990)
30. Ken A. Brameld and William A. Goddard III, Substrate Distortion to a Boat Conformation at Subsite -1 Is Critical in the Mechanism of Family 18 Chitinases
31. L.M. Rice and A.T. Brunger, Torsion Angle Dynamics: Reduced Variable Conformational Sampling Enhances Crystallographic Structure Refinement, Proteins: Structure, Function, and Genetics, 19, 277-290 (1994)
32. N.S. Pannu and R.J. Read, Improved structure refinement through maximum likelihood, Acta Cryst. A52, 659-668 (1996)
33. P.D. Adams, N.S. Pannu, R.J. Read and A.T. Brunger, Cross-validated Maximum Likelihood Enhances Crystallographic Simulated Annealing Refinement, Proc. Natl. Acad. Sci. USA 94, 5018-5023 (1997)
34. May Bente Brurberg , Bjørnar Synstad , Sonja Sletner Klemsdal , Daan M.F.
van Aalten Leif Sundheim and Vincent G.H. Eijsink, Chitinases from Serratia marcescens
36. R.J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140-149 (1986)
37. G.J. Kleywegt and A.T. Brunger, Checking your imagination: Applications of the free R value, Structure 4, 897-904 (1996)
38. A.T. Brunger, P.D. Adams and L.M. Rice, New applications of simulated annealing in X-ray crystallography and solution NMR, Structure 5, 325-336, (1997)
39. R.J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140-149 (1986)
40. G.J. Kleywegt and A.T. Brunger, Checking your imagination: Applications of the free R value, Structure 4, 897-904 (1996)
41. R.J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140-149 (1986)
42. G.J. Kleywegt and A.T. Brunger, Checking your imagination: Applications of the free R value, Structure 4, 897-904 (1996)
43. R.J. Read, Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst. A42, 140-149 (1986)
44. T.N. Bhat, Calculation of an OMIT map. J Appl Crystallogr 21, 279-281 (1988)
45. A. Hodel, S.-H. Kim, and A.T. Brunger, Model Bias in
Macromolecular Crystal Structures, Acta Cryst. A48, 851-859 (1992)
46. L.M. Rice and A.T. Brunger, Torsion Angle Dynamics: Reduced Variable Conformational Sampnameling Enhances Crystallographic Structure Refinement, Proteins: Structure, Function, and Genetics, 19, 277-290 (1994)
47. A.T. Brunger, P.D. Adams and L.M. Rice, New applications of simulated annealing in X-ray crystallography and solution NMR, Structure 5, 325-336, (1997)
48. L.Tong and M.G. Rossmann, Rotation function calculations with GLRF program. Meth. Enzymol. 276, 594-611
49. N.S. Pannu and R.J. Read, Improved structure refinement through maximum likelihood, Acta Cryst. A52, 659-668 (1996)
50. P.D. Adams, N.S. Pannu, R.J. Read and A.T. Brunger, Cross-validated Maximum Likelihood Enhances Crystallographic Simulated Annealing Refinement, Proc. Natl. Acad. Sci. USA 94, 5018-5023 (1997)
51.Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem. 2002 Jun;35(Pt 3):213-9
52. N.S. Pannu and R.J. Read, Improved structure refinement through maximum likelihood, Acta Cryst. A52, 659-668 (1996)
53. R. Huber, Die Automatisierte Faltmolekuelmethode. Acta Cryst. A19, 353-356 (1965)
54. W. Steigemann, Ph.D. Thesis, Technische Universitaet Muenchen (1974)
55. W.L. DeLano and A.T. Brunger, The Direct Rotation Function: Rotational Patterson Correlation Search Applied to Molecular Replacement, Acta Cryst. D 51,740-748 (1995)
56. L.Tong and M.G. Rossmann, Rotation function calculations with GLRF program.Meth. Enzymol. 276, 594-611
57. M. Fujinaga and R.J. Read, Experiences with a new translation function program. J. Appl. Crystallogr. 20, 517-521 (1987)
58. R.J. Read and A.J.J. Schierbeek, A phased translation function, Appl. Cryst. 21, 490-495 (1988)
59. A.T. Brunger, Extension of molecular replacement: A new search strategy based on Patterson correlation refinement, Acta Cryst. A46, 46-57 (1990)
60. J. Navaza and E. Vernoslova, On the fast translation function for molecular replacement, Acta Cryst. A51, 445-449 (1995)
61. 蔡蕙如,仙人掌桿菌幾丁質酵素的過量表現與催化反應機制的探討, 國立交
通大學應用化學研究所,2002
62. Neetu Dahiya, Rupinder Tewari and Gurinder Singh Hoondal, Biotechnological aspects of chitinolytic enzymes: a review
63. Markus Hardt and Roger A. Laine, Mutation of active site residues in the chitin-binding domain ChBD ChiA1 from chitinase A1 of Bacillus circulans alterssubstrate speci.city: use of a green .uorescent protein binding assay
64. Luis Velasquez and Ray Hammerschmidt, Development of a method for the detection and quantification of total chitinase activity by digital analysis
65. Yuji Honda, Motomitsu Kitaoka and Kiyoshi Hayashi, Kinetic evidence related to
substrate-assisted catalysis of family 18 chitinases
66. Gustav Vaaje-Kolstad, Structure of the D142N mutant of the family 18 chitinase ChiB from Serratia marcescens and its complex with allosamidin
67. Hans Merzendorfer and Lars Zimoch, Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases
68. Mikako Saito, Expression of rice chitinase gene triggered by the direct injection of Ca2+
69. ANNA KASPRZEWSKA, PLANT CHITINASES – REGULATION AND FUNCTION
70. Nathan N. ARONSON, Jr, Family 18 chitinase–oligosaccharide substrate interaction: subsite preference and anomer selectivity of Serratia marcescens chitinase A
71. Otwinowski, Z. and Minor, W.(1997) Processing of X-ray Diffraction Data Collection in Oscillation Mode Methods in Enzymology .
Macromolecular Crystallography, part A , 276 , 307-326 .
72. Duncane E.M. (1993) Practical protein crystallography . Academic press, inc., pp145-154
73. Rose N. P., Wu C.K., Liu Z.J., Newton M. G., and Wang B. C.(2001) Using single wavelength anomalous scattering data gor in-house protein structure determination ., RIGAKU J.,18(2),1-12
74. Pahler,A., Smith J.L. and Hendrickson W.A. (1990). A Probability Representation for Phase Information from Multiwavelenght Anomalous Dispersion . Acta Cryst . A46, 537-540
75. Meng-Ling Tsaia, Shwu-Huey Liawa, Nan-Chi Changd. The crystal structure of Ym1 at 1.31 A ˚ resolution. Journal of Structural Biology 148 (2004) 290–296
76. Anke C. Terwisscha van Scheltinga, Michael Hennig and Bauke W. Dijkstra. The 1.8 Å Resolution Structure of Hevamine, a Plant Chitinase/Lysozyme, and Analysis of the Conserved Sequence and Structure Motifs of Glycosyl Hydrolase Family 18. J. Mol. Biol. (1996) 262, 243–257
77. Michael Hennig, Johan N. Jansonius1 Anke. Terwisscha van Scheltinga,Bauke W. Dijkstra and Bernhard Schlesier. Crystal Structure of Concanavalin B at 1.65 Å
Resolution. An ‘‘Inactivated’’ Chitinase from Seeds of Canavalia ensiformis J. Mol. Biol. (1995) 254, 237–246
78. T Hollis, AF Monzingo, K Bortone, S Ernst, R Cox and JD Robertus. The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis. Protein Sci. 2000 9: 544-551
79. Paloma F. Varela, Andrea S. Llera‡§, Roy A. Mariuzza, and Jose´ Tormo. Crystal Structure of Imaginal Disc Growth Factor. THE JOURNAL OF BIOLOGICAL CHEMISTRY .Vol. 277, No. 15, Issue of April 12, pp. 13229–13236, 2002
80. Michael B. Howard. Nathan A. Ekborg. Ronald M. Weiner. Steven W. Hutcheson. Detection and characterization of chitinase and other chitin-modifying enzymes.
J Ind Microbiol Biotechnol (2003) 30: 627-635