研究生: |
郭泓毅 KUO, HUNG-YI |
---|---|
論文名稱: |
超導共振腔體之結構變形對內部電磁場特性之影響 The Effects of Structural Deformation on the Characteristic of the Electromagnetic of the Superconducting Radio-Frequency Cavity |
指導教授: |
葉孟考
Meng-Kao Yeh |
口試委員: |
蔡佳霖
Tsai, Jia-Lin 林明泉 Lin, Ming-Chyuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 共振腔 、跨領域分析 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主旨在於對薄殼狀結構的超導共振腔體在受到不同的負載條件下,腔體結構變形與共振基頻的電磁場特性進行分析與討論。當模擬共振腔體受到結構變形與其共振基頻變化的相關性時,使用有限單元分析軟體ANSYS建立模型,並且對於共振腔體進行結構變形與電磁場特性的跨領域分析。於分析的過程中,設定邊界條件和給予結構單元必要的機械性質與電磁場的常數,接著對於不同厚度的腔體施加軸向位移與壓力及溫度變化等,討論在各種參數條件下,結構變形與電磁場特性的相關性。
首先以不同單元密度的劃分方式,在沒有外加負載的情況下,分析腔體共振基頻的收斂情形及微波之腔體的電場與磁場特性。之後固定腔體模型中薄殼單元的厚度與楊氏係數,分析內部虛擬實體單元不同的楊氏係數,在給予固定軸向壓縮位移與內外壓力差時,腔體的反作用力、最大等效應力與變形後共振基頻飄移的收斂性。接著對於相同厚度殼單元結構,給予不同的壓縮位移與內外壓力差,以及改變薄殼單元之楊氏係數、普松比,探討不同機械性質對於腔體變形後共振基頻飄移量之影響,並且分析腔體由室溫冷卻至液態氦的溫度時,不同熱膨脹係數對共振基頻飄移量的影響。
由於共振腔體在加工的過程中厚度難免會有變化,因此分析在承受內外壓力差及端面位移負載的情況下,探討厚度對腔體結構變形及共振頻率變化的影響,以便在進行實驗時,於量測將腔體抽真空後內部的共振頻率後,能推算出腔體在經過加工之後的等效厚度;最後以此等效厚度對數值計算與實驗量測的結果進行相互的驗證。
This thesis examines the structure deformation and electromagnetic resonance characteristic of a superconducting radio frequency (SRF) cavity. This SRF cavity is a shell-liked structure; it not only deforms but also shifts the electromagnetic resonance frequencies while being externally loaded. The finite element software ANSYS is used for numerical simulation; a single-model process links the structural deformation and its relative high-frequency electromagnetic computations and thus improves both the efficiency and accuracy. Proper boundary conditions and material properties are assigned to the model, while external loading such as surface pressure, longitudinal displacement and temperature difference were applied on the model for structural deformation computing only. Characteristics of the electromagnetic field, especially the fundamental resonance mode, of the deformed cavity with various thickness, external loading conditions, and mechanical properties, are discussed.
Convergence test on the resonance frequency of the unloaded SRF cavity was firstly performed to determine the suitable element density, then various virtual Young’s modulus which are assigned to the interior vacuum space of the cavity with particular thickness and Young’s modulus but under either surface pressure or longitudinal compression to determine the upper bound of the virtual Young’s modulus by examine its convergence on both the maximum von Mises stress and the resonance frequency. With fixed mesh and virtual Young’s modulus, the effects of mechanical properties including Young’s modulus, Poisson ratio, and coefficient of thermal expansion, on the drift of electromagnetic resonance frequency under various external loading were systematically studied.
In practical, the SRF cavity is formed from a uniform plate but turn out its final thickness varies along the cavity wall due to uneven stretching during machining. Therefore, it is essential to establish a complete matrix on the effects of uniform thickness on the structure deformation and consequent frequency drift of the SRF cavity, so that an equivalent thickness of a real cavity could be estimated after measuring its resonance frequency shift for the cavity under various external loads. And then the equivalent thickness could be used to predict further physical behavior of the real cavity by numerical simulations.
1. H. Padamsee, P. Barnes, C. Chen, W. Hartung, J. Kirchgessner, D. Moffat, R. Ringrose, D. Rubin, Y. Samed, D. Saraniti, J. Sears, Q.S. Shu, and M. Tigner, “Design challenges for high-current storage rings,” Part. Accel. Vol. 40, 1992, pp. 17-41.
2. T. Furuya, K. Akai, K. Asano, E. Ezura, K. Hara, et al., “A prototype module of a superconducting damped cavity for KEKB,” Proc. EPAC96, 1996, pp. 2121-2123.
3. “Agreement between High-Energy Accelerator Research Organization (KEK) and National Synchrotron Radiation Research Center (NSRRC) on the Development and Integration of the 500 MHz Superconducting RF for a High Current Application,” Dec., 2009.
4. F.R. Elder, A.M. Gurewitsch, R.V. Langmuir and H.C. Pollock, “Radiation from electrons in a synchrotron,” Physical Review, Vol. 71, pp.829-830, 1947.
5. N. Akdogan, Origin of Ferromagnetism in Oxide-Based Diluted Magnetic Semiconductors, Ruhr-Universitat Bochum Bochum, Germany, 2008.
6. 羅國輝、王兆恩、張隆海與林明泉, “同步輻射儲存環之低溫超導共振腔簡介,” 同步輻射研究中心簡訊, No.46, pp.14-19, 2000。
7. H. Padamsee, “The science and technology of superconducting cavity for accelerators,” Superconducting Science and Technology, Vol. 14, pp. 28-51, 2001.
8. H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, New York: Wiley, 1998.
9. S. Belomestnykh, P. Barnes, E. Chojnacki, R. Ehrlich, W. Hartung, T. Hays, R. Kaplan, J. Kirchgessner, E. Nordberg, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin and J. Sears, “Development of superconducting RF for CESR,” Proceedings of the Particle Accelerator Conference, Vancouver, Canada, 1997.
10. S. Belomestnykh, “The high luminosity performance of CESR with the new generation superconducting cavity,” Report SRF 990407-03, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 1999.
11. S. Belomestnykh, P. Barnes, R. Ehrlich, R. Geng, D. Hartill, S. Henderson, R. Kaplan, J. Knobloch, H. Padamsee, S. Peck, P. Quigley, J. Reilly, D. Rubin, D. Sabol, J. Sears, M. Tigner, V. Veshcherevich, “Superconducting RF system upgrade for short bunch operation of CESR,” Report SRF 010717-05, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 2001.
12. E. Chojmacki and J. Sears, “Superconducting RF cavities and cryogenics for the CESR III upgrade,” Report SRF 990716-09, Laboratory of Nuclear Strudies, Cornell University, Ithaca, NY, 1999.
13. H. Padamsee, J. Knobloch, and T. Hays, RF Superconductivity for Accelerators, Wiley Interscience, New York, 2000.
14. M.G. Rao and P. Kneisel, “Thermal and mechanical properties of electron beam welded and heated-treated niobium for tesla,” Continuous Electron Beam Accelerator Facility Newport News﹐pp. 1-7, 1993.
15. M.G. Rao and P. Kneisel, “High RRR material properties of niobium and specifications for fabrication of superconducting cavities,” Fermilab, TD-06-048, 2006.
16. M.F. Thomas, Cryogenic Engineering, Marcel Dekker Inc﹐pp. 181-214, 1997.
17. K. Ishio, K. Kikuchi, M. Mizumoto and A. Naito, “Fracture toughness and mechanical properties of pure niobium and its welded joints of superconducting cavity at 4K,” 9th Workshop on RF Superconductivity, 1999.
18. C. Compton, T. Bieler, B. Simkin and S. Jadhav, “Measured Properties of High RRR Niobium,” Report of National Superconducting Cyclotron Laboratory, August 9, 2000.
19. R.P. Walsh, R.R. Mitchell, V.T. Toplosky and R.C. GentZlinger, “Low temperature tensile and fracture toughness properties of SCRF cavity structural materials,” 9 th Workshop on RF- Superconductivity, 1999.
20. J. Knobloch, W. Hartung, and H. Padamsee, “Enhanced susceptibility of Nb cavity equator welds to the hydrogen related Q-virus,” Report SRF 981012-12, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
21. E. Chiaveri, C. Benvenuti, R. Cosso, D. Lacarrere, K.M. Schirm, M. Taufer and W. Weingarten, “Analysis and results of the industrial production of the superconducting Nb/Cu cavities for the LEP 2 project,” Proceedings of the Particle Accelerator Conference, Dallas, Vol. 3, pp. 1509-1511, 1995.
22. K. Saito, T. Fujino, H. Inoue, N. Hitomi, E. Kako, T. Shishido, S. Noguchi and Y. Yamazaki, “Feasiblity study of Nb/Cu clad superconducting RF cavities,” Superconducting, Vol. 9, No. 2, June, 1999.
23. H. Padamsee, “Review of experience with HOM damped cavities,” Report of SRF 980612-04, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1998.
24. C.C. Yang, “HOM damping in RF cavities of storage ring,” Ph.D. Dissertation, National Tsing Hua University, 2002.
25. J. Kirchgessner and S. Belomestnykh, “On the pressure compensation for the B-cell cavity in the MARK II cryostat,” Report of SRF 970624-06, Laboratory of Nuclear Studies, Cornell University, pp.1-4, 1997.
26. J. Kirchgessner, “The use of super conducting RF for high current applications,” Particle Accelerators, Vol. 46, pp. 151-162, 1994.
27. Y.C. Tsai, “Studies of high-order-mode suppression in storage ring RF cavities,” Ph.D. Dissertation, National Tsing Hua University, 1997.
28. 陳家逸, “高頻共振腔高次模抑制方法之研究,” 國立清華大學碩士論文, 2003.
29. J. Mammosser, P. Kneisel and J.F. Benesch, “Analysis of mechanical fabrication experience with CEBAF’s production SRF cavities,” The Institute of Electrical and Electronics Engineers, pp. 947-949, 1993.
30. G. H. Luo, L. H. Chang, C.C. Kuo, M. C. Lin, R. sah, T.T. Yang and Ch. Wang, “The superconducting RF cavity and 500 mA beam current upgrade project at Taiwan Light Source,” Proceeding of European Particle Accelerator Conference, pp. 654-656, Vinena, Austria, 2000.
31. J. Kirchgessner, “Thoughts on the very high value of dF/dP or pressure sensitivity of the B cell cavity in the MTM cryostat, ” Report SRF 940321-01, Laboratory of Nuclear Studies, Cornell University, Ithaca, NY, 1994.
32. 陳伯毅, “低溫超導共振腔之挫曲及變形分析與實驗,” 國立清華大學碩士論文, 2003.
33. 鍾明忠, “共振腔結構受端面位移影響之模態分析與實驗,” 國立清華大學碩士論文, 2004.
34. E. Zaplatin, C. Compton, W. Hartung, M. J. Johnson, F. Marti, J. Oliva, J. Popielarski, and R. C. York, “Strucural analyses of MSU quarter-waver resonators,” Proc. SRF2009, 2009, pp. 560-563.
35. E. Zaplatin, “FZJ SC cavity coupled analyses,” Proc. of the 12th Workshop on RF Superconductivity, 2005 , pp. 342-346.
36. 高福聲, “低溫超導共振腔之結構變形對內建電磁場特性之影響,” 國立清華大學碩士論文, 2002.
37. M.C. Lin, Ch. Wang, L. H. Chang, G. H. Luo and P. J. Chou, “A coupled-field analysis on RF cavity,” Particle Accelerator Conference, Chicago, U.S.A., 2001.
38. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, F. S. Kao, M. K. Yeh and M. J. Huang, “A coupled-field analysis on a 500 MHz superconducting radio frequency niobium cacity,” Proceedings of EPAC, Paris, pp.2259-2261, 2002.
39. M. C. Lin, Ch. Wang, L. H. Chang, G. H. Luo, “Effect of material properties on resonance frequency of CESR-III type 500 MHz SRF cavity,” Proceedings of the 2001 Particle Acceleration Conference, PP.1371-1374, 2004.
40. D. K. Cheng, Field and wave electromagnetic, Addison Wesley, New York, 1989.
41. A. V. Kudrin and E. Y. Petrov, “Cylindrical electromagnetic waves in a nonlinear nondispersive medium : Exact solutions of the Maxwell equations,” JEPT, 110, pp.537-548, March 2010.
42. 鄭傑仁, “由共振腔內部電磁場特性推算腔體材料的機械性質,” 國立清華大學碩士論文, 2005.
43. M. C. Lin, M. K. Yeh, Ch. Wang, F. S. Kao, and L. H. Chang, 2007, “Effects of structural behavior on electromagnetic resonance frequency of a superconducting radio frequency cavity,” Journal of Mechanics, Vol. 23, 187-196.
44. ANSYS Release 12.1, ANSYS, Inc., PA, 2009.
45. 康淵,陳信吉,ANSYS入門《修訂四版》,第6-2到6-28頁,全華圖書股份有限公司,台北,台灣,2007。
46. C. Wang, “Electric and magnetic walls on dielectric interfaces,” ShangGang Report 01-2009, 70 Huntington Road, Apartment 11, New Haven, CT 06512, USA.
47. ANSYS Element Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
48. ANSYS Theory Reference. 000855. Eighth Edition. SAS IP, Inc. 1997.
49. J. Min, The Finite Element Method in Electromagnetics, Wiley-Interscience, New York, 1993.
50. V. Ravindranath, J. Rose, W. valet, W, Gash, P. Mortazavi, S. Sharma, T. Schulthesis, “Safety analyses of NSLS-II superconducting RF cavities,” Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation Conference, Shanghai, China, OCT, 2012.