研究生: |
林宇君 Lin, Yu-Chun |
---|---|
論文名稱: |
提升大腸桿菌系統表現可溶性重組蛋白質之功能性胜肽 Application of solubility enhancing peptide in Escherichia coli expression system |
指導教授: |
張大慈
Chang, Dah-Tsyr |
口試委員: |
黎耀基
Yiu-Kay Lai 蘇士哲 Shih-Che Sue 溫國蘭 Kuo-Lan Wen 郭俊賢 Chun-Hsien Kuo |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 138 |
中文關鍵詞: | 蛋白質可溶性 、包涵體 、提升可溶性 、重組蛋白/胜肽表現 、大腸桿菌系統 |
外文關鍵詞: | Protein solubility, Inclusion body, Solubility enhancing, Recombinant protein/peptide production, E. coli expression system |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前使用大腸桿菌系統生產重組蛋白質常遭遇可溶性不足或重組胜肽分子量過小不易回收純化等問題。本研究運用一段可提升目標重組蛋白於大腸桿菌系統可溶性的胜肽標誌及可幫助重組蛋白純化的親和性標誌―Starch binding domain (SBD)提升具功能性重組蛋白質之可溶性與回收率。本研究以具有醣胺聚糖(Glycosaminoglycan、GAG)結合能力的人類嗜酸性白血球陽離子蛋白(Eosinophil cationic protein、ECP)及由ECP序列中核心GAG結合區域衍生之無毒性細胞穿透胜肽(Cell penetrating peptide、CPPecp)為標的,設計、表現與純化重組蛋白質。以往利用細菌表現ECP時會形成不可溶之包涵體(Inclusion body),故至今尚無有效利用大腸桿菌系統生產可溶性ECP的案例。本研究首先以胜肽標誌修飾ECP胺基端生產重組ECP蛋白,成功表現並純化可溶性重組ECP,初步蛋白質功能性分析顯示此重組ECP仍保有GAG 結合活性。以化學法合成胜肽有序列依賴性,在回收率與純度方面受到限制,本研究第二部分將SBD修飾至CPPecp胺基端並以胜肽標誌連接兩者,成功表現並純化重組CPPecp蛋白,功能性分析結果顯示此重組CPPecp仍具有GAG 結合與細胞穿透能力。因此,本研究之胜肽標誌與SBD有效幫助功能性重組蛋白及重組胜肽在大腸桿菌系統中表現可溶性蛋白質及後續純化分析,未來會測試更多目標蛋白以確認結合胜肽標誌及SBD作為提升重組蛋白可溶性的親和性標誌之應用方法。
Currently insufficient protein solubility and peptide recovery remains a major bottleneck in expression of recombinant proteins and peptides in E. coli system. Our laboratory antecedently identified a solubility enhancing peptide which facilitates expression of soluble recombinant proteins in E. coli, and a starch binding domain (SBD) which has become a well-developed affinity purification tag. In this study, human eosinophil cationic protein (ECP), a glycosaminoglycan (GAG) binding protein which has never been isolated with a soluble form in E. coli system and a 10 amino-acid peptide, non-cytotoxic as well as multifunctional cell-penetrating peptide (CPPecp) holding the core GAG binding region of ECP, were taken as examples to assess the solubility enhancing peptide and SBD in expression and purification of insoluble protein and functional peptide in E. coli system. By fusing an N-terminal solubility enhancing peptide, soluble recombinant ECP could be expressed and purified without time-consuming refolding process from insoluble inclusion bodies. Preliminary functional studies revealed that the N-terminal fusion of recombinant ECP remained its GAG binding activity. For CPPecp, an N-terminal SBD was fused to CPPecp spaced with an internal solubility enhancing peptide as recombinant SBD-CPPecp was successfully expressed and purified with GAG binding and cell-penetrating activities. These results suggested that the solubility enhancing peptide and SBD aid in expression and purification of functional recombinant ECP and CPPecp, which significantly facilitate further application of the solubility enhancing peptide and SBD as effective fusion partners in near future.
1. Brondyk WH: Selecting an appropriate method for expressing a recombinant protein. Methods in enzymology 2009, 463:131-147.
2. Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A: Microbial factories for recombinant pharmaceuticals. Microbial cell factories 2009, 8:17.
3. Huang CJ, Lin H, Yang X: Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. Journal of industrial microbiology & biotechnology 2012, 39(3):383-399.
4. Nettleship JE, Assenberg R, Diprose JM, Rahman-Huq N, Owens RJ: Recent advances in the production of proteins in insect and mammalian cells for structural biology. Journal of structural biology 2010, 172(1):55-65.
5. Rosano GL, Ceccarelli EA: Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in microbiology 2014, 5:172.
6. Sezonov G, Joseleau-Petit D, D'Ari R: Escherichia coli physiology in Luria-Bertani broth. Journal of bacteriology 2007, 189(23):8746-8749.
7. Choi JH, Keum KC, Lee SY: Production of recombinant proteins by high cell density culture of Escherichia coli. Chemical Engineering Science 2006, 61(3):876-885.
8. Lee SY: High cell-density culture of Escherichia coli. Trends in Biotechnology 1996, 14(3):98-105.
9. Shiloach J, Fass R: Growing E. coli to high cell density—A historical perspective on method development. Biotechnology advances 2005, 23(5):345-357.
10. Olson P, Zhang Y, Olsen D, Owens A, Cohen P, Nguyen K, Ye JJ, Bass S, Mascarenhas D: High-level expression of eukaryotic polypeptides from bacterial chromosomes. Protein expression and purification 1998, 14(2):160-166.
11. Baneyx F: Recombinant protein expression in Escherichia coli. Current opinion in biotechnology 1999, 10(5):411-421.
12. Morrow JF, Cohen SN, Chang AC, Boyer HW, Goodman HM, Helling RB: Replication and transcription of eukaryotic DNA in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 1974, 71(5):1743-1747.
13. Ratzkin B, Carbon J: Functional expression of cloned yeast DNA in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 1977, 74(2):487-491.
14. Rosano GL, Ceccarelli EA: Recombinant protein expression in microbial systems. Frontiers in microbiology 2014, 5:341.
15. Chen R: Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnology advances 2012, 30(5):1102-1107.
16. Celik E, Calik P: Production of recombinant proteins by yeast cells. Biotechnology advances 2012, 30(5):1108-1118.
17. Mattanovich D, Branduardi P, Dato L, Gasser B, Sauer M, Porro D: Recombinant protein production in yeasts. Methods in molecular biology 2012, 824:329-358.
18. Ciarkowska A, Jakubowska A: [Pichia pastoris as an expression system for recombinant protein production]. Postepy biochemii 2013, 59(3):315-321.
19. Cox MM: Recombinant protein vaccines produced in insect cells. Vaccine 2012, 30(10):1759-1766.
20. Jarvis DL: Baculovirus-insect cell expression systems. Methods in enzymology 2009, 463:191-222.
21. Hu YC: Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta pharmacologica Sinica 2005, 26(4):405-416.
22. Almo SC, Love JD: Better and faster: improvements and optimization for mammalian recombinant protein production. Current opinion in structural biology 2014, 26c:39-43.
23. Sorensen HP, Mortensen KK: Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 2005, 115(2):113-128.
24. Sevastsyanovich YR, Alfasi SN, Cole JA: Sense and nonsense from a systems biology approach to microbial recombinant protein production. Biotechnology and applied biochemistry 2010, 55(1):9-28.
25. Yang Z, Zhang L, Zhang Y, Zhang T, Feng Y, Lu X, Lan W, Wang J, Wu H, Cao C et al: Highly Efficient Production of Soluble Proteins from Insoluble Inclusion Bodies by a Two-Step-Denaturing and Refolding Method. PloS one 2011, 6(7):e22981.
26. Basu A, Li X, Leong SS: Refolding of proteins from inclusion bodies: rational design and recipes. Applied microbiology and biotechnology 2011, 92(2):241-251.
27. Porowinska D, Marszalek E, Wardecka P, Komoszynski M: [In vitro renaturation of proteins from inclusion bodies]. Postepy higieny i medycyny doswiadczalnej (Online) 2012, 66:322-329.
28. Burgess RR: Refolding solubilized inclusion body proteins. Methods in enzymology 2009, 463:259-282.
29. Markossian KA, Kurganov BI: Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. Biochemistry Biokhimiia 2004, 69(9):971-984.
30. Terpe K: Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Applied microbiology and biotechnology 2006, 72(2):211-222.
31. Demain AL, Vaishnav P: Production of recombinant proteins by microbes and higher organisms. Biotechnology advances 2009, 27(3):297-306.
32. Terpe K: Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied microbiology and biotechnology 2003, 60(5):523-533.
33. Wang Z, Li H, Guan W, Ling H, Wang Z, Mu T, Shuler FD, Fang X: Human SUMO fusion systems enhance protein expression and solubility. Protein expression and purification 2010, 73(2):203-208.
34. Lin SC, Lin IP, Chou WI, Hsieh CA, Liu SH, Huang RY, Sheu CC, Chang MD: CBM21 starch-binding domain: a new purification tag for recombinant protein engineering. Protein expression and purification 2009, 65(2):261-266.
35. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM: A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Bio/technology (Nature Publishing Company) 1993, 11(2):187-193.
36. Malhotra A: Tagging for protein expression. Methods in enzymology 2009, 463:239-258.
37. Kapust RB, Waugh DS: Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 1999, 8(8):1668-1674.
38. De Marco V, Stier G, Blandin S, de Marco A: The solubility and stability of recombinant proteins are increased by their fusion to NusA. Biochemical and biophysical research communications 2004, 322(3):766-771.
39. Xie H, Guo XM, Chen H: Making the most of fusion tags technology in structural characterization of membrane proteins. Molecular biotechnology 2009, 42(2):135-145.
40. Southall SM, Simpson PJ, Gilbert HJ, Williamson G, Williamson MP: The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS letters 1999, 447(1):58-60.
41. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ: Carbohydrate-binding modules: fine-tuning polysaccharide recognition. The Biochemical journal 2004, 382(Pt 3):769-781.
42. Chou WI, Pai TW, Liu SH, Hsiung BK, Chang MD: The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. The Biochemical journal 2006, 396(3):469-477.
43. Jiang TY, Ci YP, Chou WI, Lee YC, Sun YJ, Chou WY, Li KM, Chang MD: Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose. PloS one 2012, 7(7):e41131.
44. Liu YN, Lai YT, Chou WI, Chang MD, Lyu PC: Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. The Biochemical journal 2007, 403(1):21-30.
45. Tung JY, Chang MD, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ: Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. The Biochemical journal 2008, 416(1):27-36.
46. Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J: Structure determination of the small ubiquitin-related modifier SUMO-1. Journal of molecular biology 1998, 280(2):275-286.
47. Schultz LW, Chivers PT, Raines RT: The CXXC motif: crystal structure of an active-site variant of Escherichia coli thioredoxin. Acta crystallographica Section D, Biological crystallography 1999, 55(Pt 9):1533-1538.
48. Yang F, Moss LG, Phillips GN, Jr.: The molecular structure of green fluorescent protein. Nature biotechnology 1996, 14(10):1246-1251.
49. Cardoso RM, Daniels DS, Bruns CM, Tainer JA: Characterization of the electrophile binding site and substrate binding mode of the 26-kDa glutathione S-transferase from Schistosoma japonicum. Proteins 2003, 51(1):137-146.
50. Sharff AJ, Rodseth LE, Quiocho FA: Refined 1.8-A structure reveals the mode of binding of beta-cyclodextrin to the maltodextrin binding protein. Biochemistry 1993, 32(40):10553-10559.
51. Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M: Fungal glucoamylases. Biotechnology advances 2006, 24(1):80-85.
52. Mertens JA, Braker JD, Jordan DB: Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris. Appl Biochem Biotechnol 2010, 162(8):2197-2213.
53. Thitiprasert S, Sooksai S, Thongchul N: In vivo regulation of alcohol dehydrogenase and lactate dehydrogenase in Rhizopus oryzae to improve L-lactic acid fermentation. Appl Biochem Biotechnol 2011, 164(8):1305-1322.
54. Janecek S, Sevcik J: The evolution of starch-binding domain. FEBS letters 1999, 456(1):119-125.
55. Lin SC, Liu WT, Liu SH, Chou WI, Hsiung BK, Lin IP, Sheu CC, Dah-Tsyr Chang M: Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC biochemistry 2007, 8:9.
56. Huang Y-T: Functional characterization of bacteria and ligand binding activities of recombinant tachypleus plasma lectin. Master Thesis 2013.
57. Donohugh DL: Eosinophils and eosinophilia. California medicine 1966, 104(6):421-427.
58. Park SY, Oh S, Kim EJ, Yoon SY, Park HS, Yoon HS, Cho S: Utility of eosinophil cationic protein levels in the diagnosis of intrinsic atopic dermatitis. Acta dermato-venereologica 2014, 94(3):333-334.
59. Logan MR, Odemuyiwa SO, Moqbel R: Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. The Journal of allergy and clinical immunology 2003, 111(5):923-932; quiz 933.
60. Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ: Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proceedings of the National Academy of Sciences of the United States of America 1986, 83(10):3146-3150.
61. Cho S, Beintema JJ, Zhang J: The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 2005, 85(2):208-220.
62. Findlay D, Mathias AP, Rabin BR: The active site and mechanism of action of bovine pancreatic ribonuclease. 5. The charge types at the active centre. The Biochemical journal 1962, 85(1):139-144.
63. Rosenberg HF: The eosinophil ribonucleases. Cellular and molecular life sciences : CMLS 1998, 54(8):795-803.
64. Sorrentino S, Libonati M: Human Pancreatic-Type and Nonpancreatic-Type Ribonucleases: A Direct Side-by-Side Comparison of Their Catalytic Properties. Archives of Biochemistry and Biophysics 1994, 312(2):340-348.
65. Irie M: [Structures and functions of ribonucleases]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan 1997, 117(9):561-582.
66. Sorrentino S: The eight human "canonical" ribonucleases: molecular diversity, catalytic properties, and special biological actions of the enzyme proteins. FEBS letters 2010, 584(11):2194-2200.
67. Venge P, Bystrom J, Carlson M, Hakansson L, Karawacjzyk M, Peterson C, Seveus L, Trulson A: Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 1999, 29(9):1172-1186.
68. Durack DT, Ackerman SJ, Loegering DA, Gleich GJ: Purification of human eosinophil-derived neurotoxin. Proceedings of the National Academy of Sciences of the United States of America 1981, 78(8):5165-5169.
69. Woschnagg C, Rubin J, Venge P: Eosinophil cationic protein (ECP) is processed during secretion. Journal of immunology 2009, 183(6):3949-3954.
70. Hamann KJ, Ten RM, Loegering DA, Jenkins RB, Heise MT, Schad CR, Pease LR, Gleich GJ, Barker RL: Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics 1990, 7(4):535-546.
71. Fan TC, Chang HT, Chen IW, Wang HY, Chang MD: A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 2007, 8(12):1778-1795.
72. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, Gleich GJ: Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. Journal of immunology 1989, 142(12):4428-4434.
73. Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW, Barker RL: In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. Journal of immunology 1990, 144(8):3166-3173.
74. Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF: Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic acids research 1998, 26(14):3358-3363.
75. Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, Ueda M, Yamada H, Seno M: Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 2002, 269(1):307-316.
76. Young JD, Peterson CG, Venge P, Cohn ZA: Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 1986, 321(6070):613-616.
77. Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM, Nogues MV: Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Molecular and cellular biochemistry 2005, 272(1-2):1-7.
78. Fromm JR, Hileman RE, Caldwell EE, Weiler JM, Linhardt RJ: Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys 1997, 343(1):92-100.
79. Ahlstedt S: Clinical application of eosinophilic cationic protein in asthma. Allergy proceedings : the official journal of regional and state allergy societies 1995, 16(2):59-62.
80. Kephart GM, Alexander JA, Arora AS, Romero Y, Smyrk TC, Talley NJ, Kita H: Marked deposition of eosinophil-derived neurotoxin in adult patients with eosinophilic esophagitis. The American journal of gastroenterology 2010, 105(2):298-307.
81. Liu GT, Hwang CS, Hsieh CH, Lu CH, Chang SL, Lee JC, Huang CF, Chang HT: Eosinophil-derived neurotoxin is elevated in patients with amyotrophic lateral sclerosis. Mediators of inflammation 2013, 2013:421389.
82. Slifman NR, Venge P, Peterson CG, McKean DJ, Gleich GJ: Human eosinophil-derived neurotoxin and eosinophil protein X are likely the same protein. Journal of immunology 1989, 143(7):2317-2322.
83. Newton DL, Nicholls PJ, Rybak SM, Youle RJ: Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti-transferrin receptor sFv. The Journal of biological chemistry 1994, 269(43):26739-26745.
84. Sun L, Li MS, Fisher LM, Spry CJ: Expression in Escherichia coli and purification of human eosinophil-derived neurotoxin with ribonuclease activity. Protein expression and purification 1995, 6(5):685-692.
85. Abu-Ghazaleh RI, Dunnette SL, Loegering DA, Checkel JL, Kita H, Thomas LL, Gleich GJ: Eosinophil granule proteins in peripheral blood granulocytes. Journal of leukocyte biology 1992, 52(6):611-618.
86. Mallorqui-Fernandez G, Pous J, Peracaula R, Aymami J, Maeda T, Tada H, Yamada H, Seno M, de Llorens R, Gomis-Ruth FX et al: Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution. Journal of molecular biology 2000, 300(5):1297-1307.
87. Sikriwal D, Seth D, Dey P, Batra JK: Human eosinophil-derived neurotoxin: involvement of a putative non-catalytic phosphate-binding subsite in its catalysis. Molecular and cellular biochemistry 2007, 303(1-2):175-181.
88. Hung TJ, Chang WT, Tomiya N, Lee YC, Chang HT, Chen CJ, Kuo PH, Fan TC, Chang MD: Basic amino acid residues of human eosinophil derived neurotoxin essential for glycosaminoglycan binding. International journal of molecular sciences 2013, 14(9):19067-19085.
89. Chang W-T: Characterization and Identification of Heparin/Heparan Sulfate Binding Motifs on Human Eosinophil Derived Neurotoxin. Master Thesis 2010.
90. Olsson I, Venge P: Cationic proteins of human granulocytes. II. Separation of the cationic proteins of the granules of leukemic myeloid cells. Blood 1974, 44(2):235-246.
91. Boix E, Nikolovski Z, Moiseyev GP, Rosenberg HF, Cuchillo CM, Nogues MV: Kinetic and Product Distribution Analysis of Human Eosinophil Cationic Protein Indicates a Subsite Arrangement That Favors Exonuclease-type Activity. Journal of Biological Chemistry 1999, 274(22):15605-15614.
92. Boix E: Eosinophil cationic protein. Methods in enzymology 2001, 341:287-305.
93. Fan T-C: Cloning, heterologous expression , and characterization of human eosinophil cationic protein. Master Thesis 1999.
94. Wu C-M: Mechanism of cell entry ability and signal peptide toxicity of human eosinophil cationic protein. Ph D Thesis 2004.
95. Wu CM, Chang HT, Chang MD: Membrane-bound carboxypeptidase E facilitates the entry of eosinophil cationic protein into neuroendocrine cells. The Biochemical journal 2004, 382(Pt 3):841-848.
96. Hsu C-Y: Localization and functional characterization of heparin/heparan sulfate binding peptides of eosinophil cationic protein. Master Thesis 2009.
97. Chang H-H: Molecular Recognition between Eosinophil Cationic Protein and Cell Surface. Master Thesis 2011.
98. Chang T-H: Analysis and application of human eosinophil cationic protein and ECP-derived peptide to negatively charged molecules. Master Thesis 2013.
99. Boix E: Editorial: novel strategies for the design of therapeutic antimicrobial peptides. Current drug targets 2012, 13(9):1119-1120.
100. Hung TJ, Tomiya N, Chang TH, Cheng WC, Kuo PH, Ng SK, Lien PC, Lee YC, Chang MD: Functional characterization of ECP-heparin interaction: a novel molecular model. PloS one 2013, 8(12):e82585.
101. Fan TC, Fang SL, Hwang CS, Hsu CY, Lu XA, Hung SC, Lin SC, Chang MD: Characterization of molecular interactions between eosinophil cationic protein and heparin. The Journal of biological chemistry 2008, 283(37):25468-25474.
102. Fang SL, Fan TC, Fu HW, Chen CJ, Hwang CS, Hung TJ, Lin LY, Chang MD: A novel cell-penetrating peptide derived from human eosinophil cationic protein. PloS one 2013, 8(3):e57318.
103. Lien PC, Kuo PH, Chen CJ, Chang HH, Fang SL, Wu WS, Lai YK, Pai TW, Chang MD: In silico prediction and in vitro characterization of multifunctional human RNase3. BioMed research international 2013, 2013:170398.
104. Antosova Z, Mackova M, Kral V, Macek T: Therapeutic application of peptides and proteins: parenteral forever? Trends Biotechnol 2009, 27(11):628-635.
105. Kyle S, James KA, McPherson MJ: Recombinant production of the therapeutic peptide lunasin. Microbial cell factories 2012, 11:28.
106. Kyle S, Aggeli A, Ingham E, McPherson MJ: Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol 2009, 27(7):423-433.
107. Chen C-J, Kuo P-H, Hung T-J, Fang S-L, Yang C-C, Yang S-Y, Chang MD-T: In Vitro Characterization and in Vivo Application of a Dual Functional Peptide. In: Proceedings of the 2013 Seventh International Conference on Complex, Intelligent, and Software Intensive Systems. 2546229: IEEE Computer Society 2013: 576-581.
108. Hung T-J: Structural basis for differential heparin binding modes of human eosinophil ribonucleases. Ph D Thesis 2013.
109. Fang S-l: Discovery and Application of A Novel Cell Penetrating Peptide from Human Eosinophil Cationic Protein. Ph D Thesis 2013.
110. Tsai K-C: Functional Characterization of A Novel Glycosaminoglycan Binding Peptide on Tumor Targeting and Suppression. Master Thesis 2014.
111. Chen C-J TK-C, Kuo P-H, Chang P-L, Wnag W-C, Chuang Y-J, Chang M.D.-T.: A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. BioMed research international 2014.
112. Chen T-Y: Regulatory effects of a novel cell penetrating peptide on epithelial cells. Master Thesis 2013.
113. Huang J-N, Tsai, M.-C, Fang, S.-L, Chang, M. D.-T., Wu, Y-R., Tsai, J.-J., Fu, L.-S., Lin, H.-K., Chen, Y.-J., Li, T.-W.: Low-molecular-weight heparin and unfractionated heparin decrease Th-1, 2 and 17 expressions. PloS one 2014, Sep. submitted.
114. Tsai C-H: Characterization and application of monoclonal antibodies against human eosinophil cationic protein. Master Thesis 2003.
115. Tai PC, Spry CJ, Peterson C, Venge P, Olsson I: Monoclonal antibodies distinguish between storage and secreted forms of eosinophil cationic protein. Nature 1984, 309(5964):182-184.
116. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC: Measurement of protein using bicinchoninic acid. Analytical biochemistry 1985, 150(1):76-85.
117. Walker JM: The bicinchoninic acid (BCA) assay for protein quantitation. Methods in molecular biology 1994, 32:5-8.
118. Schagger H: Tricine-SDS-PAGE. Nat Protocols 2006, 1(1):16-22.
119. Schagger H, von Jagow G: Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry 1987, 166(2):368-379.
120. Hawkes R, Niday E, Gordon J: A dot-immunobinding assay for monoclonal and other antibodies. Analytical biochemistry 1982, 119(1):142-147.
121. Bennett FC, Yeoman LC: An improved procedure for the 'dot immunobinding' analysis of hybridoma supernatants. Journal of immunological methods 1983, 61(2):201-207.
122. Calabro A, Benavides M, Tammi M, Hascall VC, Midura RJ: Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology 2000, 10(3):273-281.
123. Kane JF: Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Current opinion in biotechnology 1995, 6(5):494-500.
124. Kurland C, Gallant J: Errors of heterologous protein expression. Current opinion in biotechnology 1996, 7(5):489-493.
125. Baca AM, Hol WG: Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. International journal for parasitology 2000, 30(2):113-118.
126. Popken-Harris P, Thomas L, Oxvig C, Sottrup-Jensen L, Kubo H, Klein JS, Gleich GJ: Biochemical properties, activities, and presence in biologic fluids of eosinophil granule major basic protein. The Journal of allergy and clinical immunology 1994, 94(6 Pt 2):1282-1289.
127. Salvi G, De Los Rios P, Vendruscolo M: Effective interactions between chaotropic agents and proteins. Proteins 2005, 61(3):492-499.
128. Futami J, Seno M, Kosaka M, Tada H, Seno S, Yamada H: Recombinant human pancreatic ribonuclease produced in E. coli: importance of the amino-terminal sequence. Biochemical and biophysical research communications 1995, 216(1):406-413.
129. Takafuji S, Ohtoshi T, Takizawa H, Tadokoro K, Ito K: Eosinophil degranulation in the presence of bronchial epithelial cells. Effect of cytokines and role of adhesion. Journal of immunology 1996, 156(10):3980-3985.
130. Chang KC, Lo CW, Fan TC, Chang MD, Shu CW, Chang CH, Chung CT, Fang SL, Chao CC, Tsai JJ et al: TNF-alpha mediates eosinophil cationic protein-induced apoptosis in BEAS-2B cells. BMC cell biology 2010, 11:6.
131. Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J: Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC biotechnology 2004, 4:32.
132. Linding R, Russell RB, Neduva V, Gibson TJ: GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic acids research 2003, 31(13):3701-3708.
133. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. Journal of molecular biology 1982, 157(1):105-132.
134. Nilsson S, Piculell L, Malmsten M: Nature of macromolecular denaturation by urea and other cosolutes: experiments on agarose interpreted within a lattice model for adsorption from a mixed solvent. The Journal of Physical Chemistry 1990, 94(12):5149-5154.
135. Singh SM, Panda AK: Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 2005, 99(4):303-310.
136. Volpi N, Maccari F: Electrophoretic approaches to the analysis of complex polysaccharides. Journal of chromatography B, Analytical technologies in the biomedical and life sciences 2006, 834(1-2):1-13.
137. Boix E, Salazar VA, Torrent M, Pulido D, Nogues MV, Moussaoui M: Structural determinants of the eosinophil cationic protein antimicrobial activity. Biological chemistry 2012, 393(8):801-815.
138. Rosenberg HF, Dyer KD, Tiffany HL, Gonzalez M: Rapid evolution of a unique family of primate ribonuclease genes. Nature genetics 1995, 10(2):219-223.
139. Mohan CG, Boix E, Evans HR, Nikolovski Z, Nogues MV, Cuchillo CM, Acharya KR: The crystal structure of eosinophil cationic protein in complex with 2',5'-ADP at 2.0 A resolution reveals the details of the ribonucleolytic active site. Biochemistry 2002, 41(40):12100-12106.
140. Costa SJ, Coelho E, Franco L, Almeida A, Castro A, Domingues L: The Fh8 tag: a fusion partner for simple and cost-effective protein purification in Escherichia coli. Protein expression and purification 2013, 92(2):163-170.
141. Hansted JG, Pietikainen L, Hog F, Sperling-Petersen HU, Mortensen KK: Expressivity tag: a novel tool for increased expression in Escherichia coli. J Biotechnol 2011, 155(3):275-283.
142. Kato A, Maki K, Ebina T, Kuwajima K, Soda K, Kuroda Y: Mutational analysis of protein solubility enhancement using short peptide tags. Biopolymers 2007, 85(1):12-18.
143. Islam MM, Khan MA, Kuroda Y: Analysis of amino acid contributions to protein solubility using short peptide tags fused to a simplified BPTI variant. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2012, 1824(10):1144-1150.
144. Fraga H, Faria TQ, Pinto F, Almeida A, Brito RM, Damas AM: FH8--a small EF-hand protein from Fasciola hepatica. The FEBS journal 2010, 277(24):5072-5085.
145. Costa S, Almeida A, Castro A, Domingues L: Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in microbiology 2014, 5:63.
146. Hedhammar M, Hober S: Z(basic)--a novel purification tag for efficient protein recovery. Journal of chromatography A 2007, 1161(1-2):22-28.
147. Smith DB, Johnson KS: Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 1988, 67(1):31-40.
148. Ohana RF, Encell LP, Zhao K, Simpson D, Slater MR, Urh M, Wood KV: HaloTag7: a genetically engineered tag that enhances bacterial expression of soluble proteins and improves protein purification. Protein expression and purification 2009, 68(1):110-120.
149. Huang YS, Chuang DT: Mechanisms for GroEL/GroES-mediated folding of a large 86-kDa fusion polypeptide in vitro. The Journal of biological chemistry 1999, 274(15):10405-10412.
150. Douette P, Navet R, Gerkens P, Galleni M, Levy D, Sluse FE: Escherichia coli fusion carrier proteins act as solubilizing agents for recombinant uncoupling protein 1 through interactions with GroEL. Biochemical and biophysical research communications 2005, 333(3):686-693.
151. Zhang YB, Howitt J, McCorkle S, Lawrence P, Springer K, Freimuth P: Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein expression and purification 2004, 36(2):207-216.
152. Su Y, Zou Z, Feng S, Zhou P, Cao L: The acidity of protein fusion partners predominantly determines the efficacy to improve the solubility of the target proteins expressed in Escherichia coli. J Biotechnol 2007, 129(3):373-382.
153. Saida F, Uzan M, Odaert B, Bontems F: Expression of highly toxic genes in E. coli: special strategies and genetic tools. Current protein & peptide science 2006, 7(1):47-56.
154. Lorimer GH: A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. Faseb j 1996, 10(1):5-9.
155. Georgiou G, Valax P: Expression of correctly folded proteins in Escherichia coli. Current opinion in biotechnology 1996, 7(2):190-197.
156. Song JM, An YJ, Kang MH, Lee YH, Cha SS: Cultivation at 6-10 degrees C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli. Protein expression and purification 2012, 82(2):297-301.
157. Young CL, Britton ZT, Robinson AS: Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnology journal 2012, 7(5):620-634.
158. San-Miguel T, Perez-Bermudez P, Gavidia I: Production of soluble eukaryotic recombinant proteins in is favoured in early log-phase cultures induced at low temperature. SpringerPlus 2013, 2(1):89.
159. Nguyen VD, Hatahet F, Salo KE, Enlund E, Zhang C, Ruddock LW: Pre-expression of a sulfhydryl oxidase significantly increases the yields of eukaryotic disulfide bond containing proteins expressed in the cytoplasm of E.coli. Microbial cell factories 2011, 10:1.
160. Papaneophytou CP, Kontopidis G: Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein expression and purification 2014, 94:22-32.
161. Costa SJ, Almeida A, Castro A, Domingues L, Besir H: The novel Fh8 and H fusion partners for soluble protein expression in Escherichia coli: a comparison with the traditional gene fusion technology. Applied microbiology and biotechnology 2013, 97(15):6779-6791.
162. Carreras E, Boix E, Rosenberg HF, Cuchillo CM, Nogues MV: Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 2003, 42(22):6636-6644.
163. Torrent M, Cuyas E, Carreras E, Navarro S, Lopez O, de la Maza A, Nogues MV, Reshetnyak YK, Boix E: Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry 2007, 46(3):720-733.
164. Torrent M, de la Torre BG, Nogues VM, Andreu D, Boix E: Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. The Biochemical journal 2009, 421(3):425-434.
165. Torrent M, Odorizzi F, Nogues MV, Boix E: Eosinophil cationic protein aggregation: identification of an N-terminus amyloid prone region. Biomacromolecules 2010, 11(8):1983-1990.
166. Pulido D, Moussaoui M, Andreu D, Nogues MV, Torrent M, Boix E: Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure. Antimicrobial agents and chemotherapy 2012, 56(5):2378-2385.
167. Torrent M, Nogues MV, Boix E: Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site. Journal of molecular recognition : JMR 2011, 24(1):90-100.
168. Garcia-Mayoral MF, Canales A, Diaz D, Lopez-Prados J, Moussaoui M, de Paz JL, Angulo J, Nieto PM, Jimenez-Barbero J, Boix E et al: Insights into the glycosaminoglycan-mediated cytotoxic mechanism of eosinophil cationic protein revealed by NMR. ACS chemical biology 2013, 8(1):144-151.
169. Zhou P, Wagner G: Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. Journal of biomolecular NMR 2010, 46(1):23-31.
170. Huth JR, Bewley CA, Jackson BM, Hinnebusch AG, Clore GM, Gronenborn AM: Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. Protein Sci 1997, 6(11):2359-2364.
171. Ron D, Dressler H: pGSTag--a versatile bacterial expression plasmid for enzymatic labeling of recombinant proteins. BioTechniques 1992, 13(6):866-869.
172. Inouye S, Sahara Y: Expression and purification of the calcium binding photoprotein mitrocomin using ZZ-domain as a soluble partner in E. coli cells. Protein expression and purification 2009, 66(1):52-57.
173. DelProposto J, Majmudar CY, Smith JL, Brown WC: Mocr: a novel fusion tag for enhancing solubility that is compatible with structural biology applications. Protein expression and purification 2009, 63(1):40-49.
174. Reddi H, Bhattacharya A, Kumar V: The calcium-binding protein of Entamoeba histolytica as a fusion partner for expression of peptides in Escherichia coli. Biotechnology and applied biochemistry 2002, 36(Pt 3):213-218.
175. Song JA, Lee DS, Park JS, Han KY, Lee J: A novel Escherichia coli solubility enhancer protein for fusion expression of aggregation-prone heterologous proteins. Enzyme Microb Technol 2011, 49(2):124-130.
176. Caswell J, Snoddy P, McMeel D, Buick RJ, Scott CJ: Production of recombinant proteins in Escherichia coli using an N-terminal tag derived from sortase. Protein expression and purification 2010, 70(2):143-150.
177. Sorensen HP, Sperling-Petersen HU, Mortensen KK: A favorable solubility partner for the recombinant expression of streptavidin. Protein expression and purification 2003, 32(2):252-259.
178. Esposito D, Chatterjee DK: Enhancement of soluble protein expression through the use of fusion tags. Current opinion in biotechnology 2006, 17(4):353-358.
179. Malik A, Jenzsch M, Lubbert A, Rudolph R, Sohling B: Periplasmic production of native human proinsulin as a fusion to E. coli ecotin. Protein expression and purification 2007, 55(1):100-111.
180. Cheng Y, Gu J, Wang HG, Yu S, Liu YQ, Ning YL, Zou QM, Yu XJ, Mao XH: EspA is a novel fusion partner for expression of foreign proteins in Escherichia coli. J Biotechnol 2010, 150(3):380-388.
181. Winter J, Neubauer P, Glockshuber R, Rudolph R: Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. J Biotechnol 2001, 84(2):175-185.
182. Lee J-H, Lee JY, Song J-A, Han K-Y, Lee DS, Lee J: A stress-responsive Escherichia coli protein, CysQ is a highly effective solubility enhancer for aggregation-prone heterologous proteins. Protein expression and purification 2014, 101(0):91-98.
183. Han KY, Seo HS, Song JA, Ahn KY, Park JS, Lee J: Transport proteins PotD and Crr of Escherichia coli, novel fusion partners for heterologous protein expression. Biochimica et biophysica acta 2007, 1774(12):1536-1543.
184. Han KY, Song JA, Ahn KY, Park JS, Seo HS, Lee J: Solubilization of aggregation-prone heterologous proteins by covalent fusion of stress-responsive Escherichia coli protein, SlyD. Protein engineering, design & selection : PEDS 2007, 20(11):543-549.
185. Davis GD, Elisee C, Newham DM, Harrison RG: New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 1999, 65(4):382-388.
186. Zou Z, Cao L, Zhou P, Su Y, Sun Y, Li W: Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli. J Biotechnol 2008, 135(4):333-339.
187. Nausch H, Huckauf J, Koslowski R, Meyer U, Broer I, Mikschofsky H: Recombinant production of human interleukin 6 in Escherichia coli. PloS one 2013, 8(1):e54933.
188. Sun J, Li BA, Qi Y, Zhou JW, Zhu L, Chi SP, Cheng Y: [Cloning, expression and identification of human interleukin-10 gene]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 2007, 23(3):220-222.
189. Thomas JD, Morris KR, Godfrey DI, Lowenthal JW, Bean AG: Expression, purification and characterisation of recombinant Escherichia coli derived chicken interleukin-12. Veterinary immunology and immunopathology 2008, 126(3-4):403-406.
190. Vyas VV, Esposito D, Sumpter TL, Broadt TL, Hartley J, Knapp GCt, Cheng W, Jiang MS, Roach JM, Yang X et al: Clinical manufacturing of recombinant human interleukin 15. I. Production cell line development and protein expression in E. coli with stop codon optimization. Biotechnol Prog 2012, 28(2):497-507.
191. Si CP, Li SL, Fu J, Li CX, Li ZH, Song ZG: [Cloning and prokaryotic expression of human secreted IL-16 gene]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 2012, 28(12):1237-1241.
192. Feng G, Zhang JY, Zeng QL, Yu X, Zhang Z, Lv S, Xu X, Wang FS: Interleukin-21 mediates hepatitis B virus-associated liver cirrhosis by activating hepatic stellate cells. Hepatology research : the official journal of the Japan Society of Hepatology 2014, 44(10):E198-205.
193. Bai C, Wang X, Zhang J, Sun A, Wei D, Yang S: Optimisation of the mRNA secondary structure to improve the expression of interleukin-24 (IL-24) in Escherichia coli. Biotechnology letters 2014, 36(8):1711-1716.
194. Liu YQ, Chen ZJ, Zhang X, Wang LC, Jiao YL, Zhang J, Ma CY, Cui B, Gao XP, Liu ZM et al: [Cloning and expression of human interleukin-26 in Escherichia coli]. Sheng wu gong cheng xue bao = Chinese journal of biotechnology 2006, 22(3):413-417.