研究生: |
賴威任 Wei-Jen Lai |
---|---|
論文名稱: |
直接甲醇燃料電池陰極凝結水排除過程之觀察 Observation of Water Removal at the Cathode-Side of a DMFC |
指導教授: |
王訓忠
Shwin-Chung Wong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 水排除 、毛細力 、雙極板 |
外文關鍵詞: | water removal, capillary force, bipoplar |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為觀察直接甲醇燃料電池之陰極流道水排除。由於甲醇燃料電池反應後在陰極產生大量的水蒸氣,並凝結成液態水,使空氣無法進入氣體擴散層,陰極產生淹水的現象,更進一步減少反應面積。為了改善淹水的現象,設計具毛細力(流道間距為500μm)平行流道貼附於陰極氣體擴散層上,流道後端則連接毛細金屬網以收集凝結水,在陰極空氣之對流力的協助下,能順利移除凝結水。
雙極板採用不鏽鋼製作,將所有流道打穿,保留流道壁並覆蓋親水性玻璃,以觀察液態水的移除過程。此陰極流道具有排水、集電、固定MEA的功能。為更增加雙極板的導電性與親水性,則在不鏽鋼表面上鍍金。在甲醇濃2M、流率2ml/min,空氣流率80ml/min下(stoichimetric ratios ,λ=4),可達到15mW/cm2,並且流道亦能保持暢通。
This study observes the water removal process for the cathode-side of a DMFC. During the operation of a DMFC, a large amount of water vapor appears on the surface of GDL and partially condenses into water droplets. Excessive water at the cathode can cause flooding, which hinders oxygen access to the reaction sites and leads to reduced cell performance. To prevent flooding, the flow flied plate adopted capillary parallel channels with their rear ends attached with capillary metal wire mesh for water collection. Assisted by air convection and gravity force, the capillary force pumped out the condensed water effectively.
For visualization, through parallel channels with cross-sectional dimensions of 500*1000μm were fabricated on the stainless-steel bipolar plate (BP). The surface of flow field plate was coated with gold to further increase the electrical conductivity and hydrophilicity. Through a hydrophilic glass plate covering the BP, the process of water condensation and subsequent removal can be observed. When the air flow rate was 80ml/min (stoichimetric ratios, λ=4), the power output reaches 15 mW/cm2, with the channels free from clogging.
1. Web Site of “Fuel Cell Today”: http://www.fuelcelltoday.com/index/.
2. A. Heinzel and V.M. Barrag□n, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”, Journal of Power Sources, Vol. 84, 1999, 70–74.
3. H. Yang, T.S. Zhao, and Q. Ye “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields”, Journal of Power Sources, Vol. 139, 2005, 79–90.
4. U. Pasaogullari and C.Y. Wang, “Liquid water transport in gas diffusion layer of polymer electrolyte fuel cells”, Journal of the Electrochemical Society, Vol. 151, 2004, A399-A406.
5. K. Zhukovsky and A. Pozio, “Maximum current limitations of the PEM fuel cell with serpentine gas supply channels” Journal of Power Sources, Vol. 130, 2004, 95–105.
6. T. V. Nguyen, “A Gas Distributor Design for Proton Exchange Membrane Fuel Cells”, Journal of Electrochemical Society, Vol. 143, 1996, 103-105.
7. K. Sugiura, M. Nakata, T. Yodo, Y. Nishiguchi, M. Yamauchi, and Y. Itoh, ” Evaluation of a cathode gas channel with a water absorption layer/waste channel in a PEFC by using visualization technique”, Journal of Power Sources Vol. 145, 2005, 526–533.
8. S. Maharudrayya, S. Jayanti, and A. P. Deshpande, ” Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells”, Journal of Power Sources, Vol. 144, 2005, 94–106.
9. F. Barreras, A. Lozano, L. Vali˜no, C. Mar´ın, and A. Pascau, ” Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies”, Journal of Power Sources, Vol. 144, 2005, 54–66.
10. Li, X. and I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs”, Journal of Hydrogen Energy, Vol.30, 2005, 359 – 371.
11. S. C. Kelley, G. A. Deluga, and W. H. Smyrl, “Miniature Fuel Cells Fabricated on Silicon Substrate”, AIChE Journal, Vol. 48, 2002, 1071-1082.
12. J. Yu, P. Cheng, Z. Ma, and B. Yi, “Fabrication of Miniature Silicon Wafer Fuel Cells with Improved Performance”, Journal of Power Sources, Vol. 124, 2003, 40–46.
13. K. Shah, W.C. Shin, and R.S. Besser, “Novel Microfabrication Approaches for Directly Patterning PEM Fuel Cell Membranes”, Journal of Power Sources, Vol. 123, 2003, 172-181.
14. S. W. Cha, S. J. Lee, Y. I. Park, and F. B. Prinz, “Investigation of Transport Phenomena in Micro Flow Channels for Miniature Fuel Cells”, Fuel Cell Science, Engineering and Technology, FUEL CELL2003-1709, ASME, 2003, 143-148.
15. G. Q. Lua, C. Y. Wang, T. J. Yen, and X. Zhang, “Development and Characterization of a Silicon-based Micro Direct Methanol Fuel Cell”, Electrochimica Acta, Vol. 49, 2004, 821–828.
16. A. Hermanna, T. Chaudhuria, and P. Spagnolb, “Bipolar plates for PEM fuel cells: A review”, International Journal of Hydrogen Energy, Vol. 30, 2005, 1297-1302
17. V. Mehta and J. Smith Cooper, “Review and analysis of PEM fuel cell design and manufacturing”, International Journal of Hydrogen Energy, Vol. 114, 2003, 32-35
18. R.L. Borup and N.E.Vanderborgh, “Proceedings of Annual Automotive Technology Development Contractors” Mater Res SocSymp, Vol. 393, 1995, 151–5.
19. 陳孟壕, “微型直接甲醇燃料電池陰極之新式多段式流道,” 國立清華大學動力機械工程學系碩士論文, 2005.
20. , H. Dohle, J. Divisek, and R. Jung, “Process engineering of the direct methanol fuel cell”, Journal of Power Sources, Vol. 86, 2000, 469–477.
21. J. Argyropoulos, ”Gas evolution and power performance in direction methanol fuel cells”, Journal of Applied Electrochemistry 29:661-669, 1999
22. W. Lee, C. Ho, J.W. Van Zee, and M. Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell,” Journal of Power Sources, Vol. 84, 1999, pp 45–51
23. J. Ge and H. Liu, “Experimental studies of a direct methanol fuel cell,” Journal of Power Sources, Vol. 142, 2005, pp 56–69.
24. N. Nakagawa, and Y. Xiu, “Performance of a direct methanol fuel cell operated at atmospheric pressure,” Journal of Power Sources, Vol. 118, 2003, pp 248–255.
25. J. Liu, T.-S. Zhao, R. Chen, and W. Wong, “Effect of methanol concentration on passive DMFC performance,” Fuel Cells Bulletin, Vol. 2, 2005, pp 12-17.
26. J. S. Cowart, “An Experimental and Modeling Based Investigation into the High Stoichiometric Flow Rates Required in Direct Methanol Fuel Cells”, Journal of Power Sources, Vol. 143, 2005, pp. 30-35.