研究生: |
林宣因 Lin, Suian-Yin |
---|---|
論文名稱: |
功能性高分子與微脂粒之複合粒子(SPLexes)協同光內化作用於siRNA輸送的癌症治療應用 siRNA Photochemical Internalization Delivery Established on Sterically Polymer-based Liposomal Complexes (SPLexes) for Cancer Therapy |
指導教授: |
薛敬和
Hsiue, Ging-Ho |
口試委員: |
彭汪嘉康
薛敬和 楊台鴻 駱俊良 黃郁棻 張雍 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 163 |
中文關鍵詞: | 小片段干擾RNA 、基因傳輸 、光動力 、免疫迴避 、微脂粒 、光內化作用 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The main object of cancer gene therapy is to eradicate tumor cells, while minimizing the accumulation to the surrounding normal tissues. However, cationic lipid and polymeric carrier systems have a common dilemma in that these systems which was specific gene expression on cancer tissue. Photochemical internalization (PCI) is a unique procedure for site-specific delivery of several types of membrane-impermeable molecules to the cytosol of target cells. The technology is based on photochemical-induced release of endocytosed macromolecules from endosomes and lysosomes into the cytosol. This study is divided into three major topics, including (1) preparation of a high tumor targeting photosensitive (20FTPP) drug carrier (20FTPP-micelles) system, (2) the feasibility of sterically polymer-based liposomal complexes (SPLexes) for siRNA transfer was proposed, and (3) PCI enhanced the siRNA delivery was cooperation of twe carriers, 20FTPP-micelles and SPLexes.
(1) Dual stealth nanodevice for PDT drug delivery base on hexagonal nanoprism and pegylation for immune shelter and cancer imaging.
Target geometry for mitigating phagocytosis has garnered considerable attention recently in the drug delivery field. This study examined nanoparticles (NPs) with same volume but different shapes, namely, spherical NPs (SNPs) and hexagonal nanoprisms (HNPs), and analyzed their behaviors in vitro and in vivo. These NPs were constructed with a multifunctional block copolymer component, mPEG-b-P(HEMA-co-histidine-PLA). Geometry of SNPs and HNPs was controlled by adjusting copolymer properties and particle size was controlled by adjusting formulation parameters. Nanoparticle morphology had no effect in mitigating phagocytosis when NP size was 70 nm; however, morphology had a significant effect when NP size was 120 nm. The in vitro and in vivo studies reveal that dual stealth characteristics, pegylation and hexagonal prism structure, of nanocarriers can be adopted in clinical application for safe and efficient delivery of cancer therapy.
(2) Establishment of liposomal system stabilized via polyelectrolyte copolymer for the siRNA delivery
This part demonstrated the feasibility of sterically polymer-based liposomal complexes (SPLexes) for siRNA transfer. The stabilized SPLexes causing the corss-linkeding polyion polymers, cholesterol-P(HEMA-lysine) (PI) and methoxyl/functionalized PEG-P(HEMA-Histidine-co-MAAc) (PII), were formed, and a dual-shelled structure was obtained by TEM image. The anionic SPLexes consisting DOPE and PI could stabilize liposome mechanical strength and encapsulate with VEGF-siRNA. After associating with PII via the electronic interaction, this structure had the versatility to provide stability in vitro (4 % FBS) and mitigate the phagocytosis. Additionally, PII is disassociated from the SPLexes surface, as induced by pH changes, causing anionic SPLexes to fuse endo/lysosomes directly into the cytoplasm. Encapsulated with VEGF-siRNA, the folated SPLexes inhibited the VEGF protein expression to 74.5 ± 4.5 % and induced the apoptosis efficiently by western blot and flow cytometry analysis. In vivo study, the trace of isotope labeling nanoparticles showed that the accumulation of folate SPLexes in tumor site was higher obviously than nonfolated SPLexes did. Results of this study significantly contribute to efforts to develop lipoplexes based siRNA delivery systems.
(3) siRNA Photochemical internalization delivery based the SPLexes system for cancer therapy
Many potentially therapeutic macromolecules are taken into the cells by endocytosis, and have to be released from endocytic vesicles in order to express a therapeutic function. Photochemical internalization (PCI) is a novel technology based on photo-chemical reactions inducing rupture of endocytic vesicles. The aim of this study was to clarify which mechanisms and characters of photosensitizers applied the PCI effect for improving gene transfection. The results that the 20FTPP-micelles were low photocytotoxic and a potential candidate applying the PCI effect contrast to the high photochemical sensitive of hydrophobic/amphiphilic photosensitisers. According to the variation and production of reactive oxygen species in cytoplasm, the 20FTPP-micelles provided effect for leakage from the endocytic compartments and at the level of 80% cell viability. The results of CLSM images show that the siRNA incorporating into lipoplexes would fuse with the endo/lysosome existing the 20FTPP, and siRNA release from the chasmal endo/lysosome. Finally, the cooperation with PCI effect enhanced the siRNA-VEGF transfection and induced the VEGF expression from the western blotting analysis.
[1] J. Mei, Y. Gao, L. Zhang, X. Cai, Z. Qian, H. Huang, W. Huang, VEGF-siRNA Silencing Induces Apoptosis, Inhibits Proliferation and Suppresses Vasculoenic Mimicry in Osteosarcoma in Vitro Experimental oncology, 30 (2008) 29-34.
[2] K.-h. Choi, Y.-D. Hong, O.-J. Choi, a.S.-J. Choi, 99mTc(CO)3-Labeled Histidine-Arylpiperazines Potential Radiotracers for a Neuroreceptor Targeting, Bull. Korean Chem. Soc., 27 (2006) 1189-1193.
[3] A.D. Miller, Cationic Liposomes for Gene Therapy, Angew. Chem. Int. Ed., 37 (1998) 1769-1785.
[4] B. Vogelstein, K.W. Kinzler, Introductiom, The genetic basis of human cancer (2002) 5.
[5] A.B. Miller, B. Hoogstraten, M. Staquet, A. Winkler, Reporting results of cancer treatment, Cancer, 47 (1981) 207-214.
[6] S.R. Kristjansson, E. Farinella, S. Gaskell, R.A. Audisio, Surgical risk and post-operative complications in older unfit cancer patients, Cancer Treatment Reviews, 35 (2009) 499-502.
[7] A. Stanley, Cytostatics and immunosuppressive drugs, in: Side Effects of Drugs Annual, Elsevier, (1992) 512-528.
[8] T. IF, A. TA, G. PA, V.D. FS, Cognitive impairment associated with chemotherapy for cancer: report of a workshop, J. Clin. Oncol, 22 (2004) 2033-2042.
[9] R.K. Jain, Transport of molecules in the tumor interstitium: a review, Cancer Res., 47 (1987) 3039-3051.
[10] s. Mmitragotri, J. Llahann, Physical approaches to biomaterial design, nature materials, 8 (2009) 15-23.
[11] T. CH, C. E., Principles of Oncologic Pharmacotherapy, in Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (Eds), Cancer Management: A Multidisciplinary Approach., 11 ed, (2008.).
[12] Y. Li, G.S. Kwon, Methotrexate esters of poly(ethylene oxide)-block-poly(2-hydroxyethyl-L-aspartamide). Part I: Effects of the level of methotrexate conjugation on the stability of micelles and on drug release, Pharm Res, 17 (2000) 607-611.
[13] B.-P. L, B. JO., Nanoparticle and targeted systems for cancer therapy, Adv Drug Deliv Rev, 56 (2004) 1649-1659.
[14] C.-L. Lo, S.-J. Lin, H.-C. Tsai, W.-H. Chan, C.-H. Tsai, C.-H.D. Cheng, G.-H. Hsiue, Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery, Biomaterials, 30 (2009) 3961-3970.
[15] K.N. Masihi, Fighting infection using immunomodulatory agents, Expert Opinion on Biological Therapy, 1 (2001) 641-653
[16] L.M. Weiner, R. Surana, S. Wang, Monoclonal antibodies: versatile platforms for cancer immunotherapy, Nat Rev Immunol, 10 (2010) 317-327.
[17] G.M. Kohler, C., Continuous cultures of fused cells secreting antibody of predefined specificity., Nature, 256 (1975) 495-497.
[18] N.P.P.a.T.K. Mandal, Engineered Nanoparticles in Cancer Therapy, Recent Patents on Drug Delivery & Formulation, 1 (2007) 37-51.
[19] J.J. Barchi, Jr., K. Rittenhouse‐Olson, S. Svarovsky, Carbohydrate antigen‐nanoparticle conjugates and uses PCT Int.thereof as antimetastatic agents in treating cancer, in, 2005.( PATENT)
[20] S. V, I. H, B. AT, W. JM, S. PE, O. LJ, S. RD., IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity, Nature, 410 (2001) 1107–1111.
[21] D. GP, O. LJ, S. RD., The three Es of cancer immunoediting, Annual Rev Immunology 22 (2004) 329-360.
[22] R. I, B. J, M. D., Immunology., Harcourt Publishers Ltd., London, 2001.
[23] C. E., A tragic setback., Nature, 420 (2002) 116-118.
[24] F. A, H.-B.-A. S, L. C, G. A, C.-C. M., Gene therapy of severe combined immunodeficiency disease: Proof of principle of efficiency and safety issues. Gene therapy, primary immunodeficiencies,retrovirus, lentivirus, genome., Bull Acad Natl Med, 189 (2005) 779–788.
[25] M. E., BIOMEDICINE: gene therapy on trial., Science, 288 (2000) 951–957.
[26] S.Y. Wonga, J.M. Peletb, D. Putnam, Polymer systems for gene delivery—Past, present, and future, Prog. Polym. Sci., 32 (2007) 799–837.
[27] N.D. Sonawane, R.C. Szoka, A.S. Verkman, Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine–DNA polyplexes., J. Phys. Chem. B, 278 (2003) 44826–44831.
[28] W. MA, D. Y, A. SJ, K. AI., Toxicity of DNA-incorporated iodine-125: Quantifying the direct and indirect effects, Radiat Res, 154 (2000) 326-330.
[29] H. LB, C. M, H. RJ, H. K, S. D, Impact of tumor hypoxia and anemia on radiation therapy outcomes, Oncologist 7(2002) 492-508.
[30] M.A. El-Sayed, Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes, Accounts of Chemical Research, 34 (2001) 257-264.
[31] I.H. El-Sayed, X. Huang, M.A. El-Sayed, Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles, Cancer Letters, 239 (2006) 129-135.
[32] N.W. Shi Kam, T.C. Jessop, P.A. Wender, H. Dai, Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells, J Am Chem Soc, 126 (2004) 6850-6851.
[33] N.W. Kam, M. O'Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc Natl Acad Sci U S A, 102 (2005) 11600-11605.
[34] N.L. Oleinick, R.L. Morris, I. Belichenko, The role of apoptosis in response to photodynamic therapy:what, where, why, and how., Photochem. Photobiol. Sci., 1 (2005) 1-21.
[35] A.P. Castano, P. Mroz, M.R. Hamblin, Photodynamic therapy and anti-tumour immunity, Nature Reviews : Cancer, (2006) 353-545.
[36] P. AE, D. DR, Dosimetry considerations in phototherapy, Medical Physics 8(1981) 190-196.
[37] H.J. Nyst, R.L. van Veen, I.B. Tan, R. Peters, S. Spaniol, D.J. Robinson, F.A. Stewart, P.C. Levendag, H.J. Sterenborg, Performance of a dedicated light delivery and dosimetry device for photodynamic therapy of nasopharyngeal carcinoma: phantom and volunteer experiments, Lasers Surg Med, 39 (2007) 647-653.
[38] A. Surendiran, S. Sandhiya, S.C. Pradhan, C. Adithan, Novel applications of nanotechnology in medicine Indian, J Med Res 130 (2009) 689-701.
[39] E. Segal, R. Satchi-Fainaro, Design and development of polymer conjugates as anti-angiogenic agents, Adv Drug Deliv Rev, 61 (2009) 1159-1176.
[40] R. Haag, F. Kratz, Polymer Therapeutics: Concepts and Applications, Angew. Chem. Int. Ed. , 45 (2006) 1198 - 1215.
[41] R.K. Jain, Transport of Molecules in the Tumor Interstitium: A Review Cancer Res., 47 ( 1987) 3039-3051.
[42] I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis, Adv Drug Deliv Rev, 54 (2002) 631-651.
[43] M. Y, M. H, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Research, 46 (1986) 6387-6392.
[44] Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size, Cancer Res. 17 (1995) 3752-6.
[45] A. Joliot, A. Prochiantz, Transduction peptides: from technology to physiology, Nature Cell Biology, 6 (2004) 189-196.
[46] C.D. I. Brigger, P. Couvreur, The dawning era of polymer therapeutics., Adv. Drug Deliv. Rev., 2 (2003) 631-360.
[47] N. Chiannilkulchai, N. Ammoury, B. Caillou, J.P. Devissaguet, P. Couvreur, Hepatic tissue distribution of doxorubicin-loaded particles after i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice, Cancer Chemother. Pharmacol. , 26 (1990) 122-126.
[48] L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D.D. Decampeneere, P. Speiser, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int. J. Pharm., 15 (1983) 335–345.
[49] G. Storm, S.O. Belliot, T. Daemen, D.D. Lasic, Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system, Advanced Drug Delivery Reviews, 17 (1995) 31-48.
[50] J.C. Kah, K.Y. Wong, K.G. Neoh, J.H. Song, J.W. Fu, S. Mhaisalkar, M. Olivo, C.J. Sheppard, Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study, J Drug Target, 17 (2009) 181-193.
[51] D. Sutton, N. Nasongkla, E. Blanco, J. Gao, Functionalized micellar systems for cancer targeted drug delivery, Pharm Res, 24 (2007) 1029-1046.
[52] J. Du, Y. Tang, A.L. Lewis, S.P. Armes, pH-sensitive vesicles based on a biocompatible zwitterionic diblock copolymer, J Am Chem Soc, 127 (2005) 17982-17983.
[53] E. Segal, R. Satchi-Fainaro, Design and development of polymer conjugates as anti-angiogenic agents, Adv Drug Deliv Rev, 13 (2009) 1159-1176.
[54] S.J. Douglas, S.S. Davis, L. Illum, Nanoparticles in drug delivery, Crit Rev Ther Drug Carrier Syst, 3 (1987) 233-261.
[55] Y. Tabata, Y. Ikada, Drug delivery systems for antitumor activation of macrophages, Crit Rev Ther Drug Carrier Syst, 7 (1990) 121-148.
[56] H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B. Itty Ipe, M.G. Bawendi, J.V. Frangioni, Renal clearance of quantum dots, Nat Biotechnol, 25 (2007) 1165-1170.
[57] L.Y. Chou, K. Ming, W.C. Chan, Strategies for the intracellular delivery of nanoparticles, Chem Soc Rev, 40 (2010) 233-245.
[58] R.A. Petros, J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications, Nat Rev Drug Discov, 9 (2010) 615-627.
[59] J.A. Champion, S. Mitragotri, Role of target geometry in phagocytosis, Proc Natl Acad Sci U S A, 103 (2006) 4930-4934.
[60] K. Berg, J. Moan, Optimization of wavelengths in photodynamic therapy, J.G. Moser ed., Harwood Academic Publishers, London, 1998.
[61] J. Moan, K. Berg, V. Iani, Action spectra of dyes relevant for photodymanic therapy, J.G. Moser ed., Harwood Academic Publishers, London, 1998.
[62] G.M. Whitesides, B. Grzybowski, Self-assembly at all scales, Science, 295 (2002) 2418-2421.
[63] K.J. Lin, SMTP-1: The First Functionalized Metalloporphyrin Molecular Sieves with Large Channels, Angew Chem Int Ed Engl, 38 (1999) 2730-2732.
[64] A. Vonarbourg, C. Passirani, P. Saulnier, J.P. Benoit, Parameters influencing the stealthiness of colloidal drug delivery systems, Biomaterials, 27 (2006) 4356-4373.
[65] J.H. Lee, P. Kopeckova, J. Kopecek, J.D. Andrade, Surface properties of copolymers of alkyl methacrylates with methoxy (polyethylene oxide) methacrylates and their application as protein-resistant coatings, Biomaterials, 11 (1990) 455-464.
[66] P. Kingshott, H. Thissen, H.J. Griesser, Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins, Biomaterials, 23 (2002) 2043-2056.
[67] Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change, Angew Chem Int Ed Engl, 42 (2003) 4640-4643.
[68] E.S. Lee, H.J. Shin, K. Na, Y.H. Bae, Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization, J Control Release, 90 (2003) 363-374.
[69] A. Egli, R. Alberto, L. Tannahill, R. Schibli, U. Abram, A. Schaffland, R. Waibel, D. Tourwe, L. Jeannin, K. Iterbeke, P.A. Schubiger, Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity, J Nucl Med, 40 (1999) 1913-1917.
[70] T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jor, D. Kessel, M. Korbelik, J. Moan, Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst, 90 (1998) 889-905.
[71] H. M, M. FR, Characterization of rapid membrane internalization and recycling, J Biol Chem, 275 (2000) 15279-15286.
[72] C.J. Rijcken, O. Soga, W.E. Hennink, C.F. van Nostrum, Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: an attractive tool for drug delivery, J Control Release, 120 (2007) 131-148.
[73] S.A. Johnstone, D. Masin, L. Mayer, M.B. Bally, Surface-associated serum proteins inhibit the uptake of phosphatidylserine and poly(ethylene glycol) liposomes by mouse macrophages, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1513 (2001) 25-37.
[74] H.C. Tsai, W.H. Chang, C.L. Lo, C.H. Tsai, C.H. Chang, T.W. Ou, T.C. Yen, G.H. Hsiue, Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging, Biomaterials, 31 (2009) 2293-2301.
[75] J.S. Hu, Y.G. Guo, H.P. Liang, L.J. Wan, L. Jiang, Three-dimensional self-organization of supramolecular self-assembled porphyrin hollow hexagonal nanoprisms, J Am Chem Soc, 127 (2005) 17090-17095.
[76] S. Mitragotri, J. Lahann, Physical approaches to biomaterial design, Nat Mater, 8 (2009) 15-23.
[77] C. Fang, B. Shi, Y.Y. Pei, M.H. Hong, J. Wu, H.Z. Chen, In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size, Eur J Pharm Sci, 27 (2006) 27-36.
[78] S.D. Perrault, C. Walkey, T. Jennings, H.C. Fischer, W.C. Chan, Mediating tumor targeting efficiency of nanoparticles through design, Nano Lett, 9 (2009) 1909-1915.
[79] Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko, D.E. Discher, Shape effects of filaments versus spherical particles in flow and drug delivery, Nat Nano, 2 (2007) 249-255.
[80] C.L. Lo, C.K. Huang, K.M. Lin, G.H. Hsiue, Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery, Biomaterials, 28 (2007) 1225-1235.
[81] J.S. Moore, S.I. Stupp, Room temperature polyesterification, Macromolecules, 23 (1990) 65-70.
[82] R. Schibli, K.V. Katti, C. Higginbotham, W.A. Volkert, R. Alberto, In vitro and in vivo evaluation of bidentate, water-soluble phosphine ligands as anchor groups for the organometallic fac-[99mTc(CO)3]+-core, Nucl Med Biol, 26 (1999) 711-716.
[83] C.L. Lo, K.M. Lin, G.H. Hsiue, Preparation and characterization of intelligent core-shell nanoparticles based on poly(D,L-lactide)-g-poly(N-isopropyl acrylamide-co-methacrylic acid), J Control Release, 104 (2005) 477-488.
[84] R.H. Insall, L.M. Machesky, Actin dynamics at the leading edge: from simple machinery to complex networks, Dev Cell, 17 (2009) 310-322.
[85] I. Brigger, C. Dubernet, P. Couvreur, Nanoparticles in cancer therapy and diagnosis, Adv Drug Deliv Rev, 54 (2002) 631-651.
[86] S.M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature, 411 (2001) 494-498.
[87] B.L. Bass, RNA interference. The short answer, Nature, 411 (2001) 428-429.
[88] H. Kawasaki, K. Taira, Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells, Nucleic Acids Res, 31 (2003) 700-707.
[89] A.S. Lee, GRP78 induction in cancer: therapeutic and prognostic implications, Cancer Res, 67 (2007) 3496-3499.
[90] T.G. Park, J.H. Jeong, S.W. Kim, Current status of polymeric gene delivery systems, Adv Drug Deliv Rev, 58 (2006) 467-486.
[91] T. Merdan, J. Kopecek, T. Kissel, Prospects for cationic polymers in gene and oligonucleotide therapy against cancer, Adv Drug Deliv Rev, 54 (2002) 715-758.
[92] J. Soutschek, A. Akinc, B. Bramlage, K. Charisse, R. Constien, M. Donoghue, S. Elbashir, A. Geick, P. Hadwiger, J. Harborth, M. John, V. Kesavan, G. Lavine, R.K. Pandey, T. Racie, K.G. Rajeev, I. Rohl, I. Toudjarska, G. Wang, S. Wuschko, D. Bumcrot, V. Koteliansky, S. Limmer, M. Manoharan, H.P. Vornlocher, Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs, Nature, 432 (2004) 173-178.
[93] H. Wang, P. Zhao, X. Liang, X. Gong, T. Song, R. Niu, J. Chang, Folate-PEG coated cationic modified chitosan – Cholesterol liposomes for tumor-targeted drug delivery, Biomaterials, 31 (2010) 4129-4138.
[94] L. Zhang, S. Granick, How to stabilize phospholipid liposomes (using nanoparticles), Nano Lett, 6 (2006) 694-698.
[95] J. Gao, J. Sun, H. Li, W. Liu, Y. Zhang, B. Li, W. Qian, H. Wang, J. Chen, Y. Guo, Lyophilized HER2-specific PEGylated immunoliposomes for active siRNA gene silencing, Biomaterials, 31 (2010) 2655-2664.
[96] N. Sakaguchi, C. Kojima, A. Harada, K. Koiwai, K. Kono, The correlation between fusion capability and transfection activity in hybrid complexes of lipoplexes and pH-sensitive liposomes, Biomaterials, 29 (2008) 4029-4036.
[97] A.E. Felber, B. Castagner, M. Elsabahy, G.F. Deleavey, M.J. Damha, J.C. Leroux, siRNA nanocarriers based on methacrylic acid copolymers, J Control Release, 152 (2010) 159.
[98] K.H. Bae, K. Lee, C. Kim, T.G. Park, Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging, Biomaterials, 32 (2011) 176-184.
[99] L. D, S. WM, Synthetic DNA delivery systems, Nat Biotechnol 18 (2000) 33–37.
[100] W. Gu, L. Putral, K. Hengst, K. Minto, N.A. Saunders, G. Leggatt, N.A.J. McMillan, Inhibition of cervical cancer cell growth in vitro and in vivo with lentiviral-vector delivered short hairpin RNA targeting human papillomavirus E6 and E7 oncogenes., Cancer Gene Therapy, 13 (2006) 1023-1032.
[101] M. Zaratiegui, D.V. Irvine, R.A. Martienssen, Noncoding RNAs and Gene Silencing, Cell, 128 (2007) 763-776.
[102] C.D.N.a.P.A. Sharp, The RNAi revolution, Nature, 430 (2004) 161-164.
[103] J. Mei, Y. Gao, L. Zhang, X. Cai, Z. Qian, H. Huang, W. Huang, VEGF-siRNA silencing induces apoptosis, inhibits proliferation and suppresses vasculogenic mimicry in osteosarcoma in vitro, Exp Oncol, 30 (2008) 29-34.
[104] G. Siegfried, A. Basak, J.A. Cromlish, S. Benjannet, J. Marcinkiewicz, M. Chretien, N.G. Seidah, A.M. Khatib, The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis, J Clin Invest, 111 (2003) 1723-1732.
[105] O.M. D. C. Drummond, K. Hong, D. B. Kirpotin, and D. Papahadjopoulos Optimizing Liposomes for Delivery of Chemotherapeutic Agents to Solid Tumors. , Pharmacol. Rev., 51 (1999) 691-744.
[106] J. Huwyler, J. Drewe, S. Krahenbuhl, Tumor targeting using liposomal antineoplastic drugs, Int J Nanomedicine, 3 (2008) 21-29.
[107] W.C. Zamboni, Liposomal, nanoparticle, and conjugated formulations of anticancer agents, Clin Cancer Res, 11 (2005) 8230-8234.
[108] J.N. Israelachvili, Intramolecular and Surface Forces, Academic Press, 1991.
[109] D. Papahadjopoulos, S. Nir, S. Oki, Permeability properties of phospholipid membranes: effect of cholesterol and temperature, Biochimica et biophysica acta, 266 (1972) 561-583.
[110] D.D. Lasic, D. Papahadjopoulos, Medical Applications of Liposomes, Elsevier, 1998.
[111] Gregoriadis G, Gursel I, Gursel M, McCormack B. Liposomes as immunological adjuvants and vaccine carriers. Journal of Controlled Release. 41 (1996) 49-56.
[112] D.D. Lasic, Novel applications of liposomes, Trends in Biotechnology, 16 (1998) 307-321.
[113] A. Gabizon, R. Chisin, S. Amselem, Pharmacokinetic and imaging studies in patients receiving a formulation of liposome associated adriamycin., Br J Cancer, 64 (1991) 1125-1132.
[114] E.G. Mayhew, D. Lasic, S. Babbar, F.J. Martin, Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid, Int J Cancer, 51 (1992) 302-309.
[115] J. Vaage, E. Mayhew, D. Lasic, F. Martin, Therapy of primary and metastatic mouse mammary carcinomas with doxorubicin encapsulated in long circulating liposomes, Int J Cancer, 51 (1992) 942-948.
[116] R.K. Jain, Delivery of molecular and cellular medicine to solid tumors, Adv Drug Deliv Rev, 26 (1997) 71-90.
[117] D.D. NZ Wu, T. Rudolf, D. Needham, M. Dewhirst, Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumor tissue., Cancer Res 53 (1993) 3765-3770.
[118] D.D. Lasic, Doxorubicin in sterically stabilized liposomes, Nature, 380 (1996) 561-562.
[119] D.D. Lasic, D. Needham, The "Stealth" Liposome: A Prototypical Biomaterial, Chemical Reviews, 95 (1995) 2601-2628.
[120] R.J. Lee., P.S. Low, Folate-targeted liposomes for drug delivery, J. Liposome Res., 7 (1997) 455-466.
[121] D.D. Lasic, Liposomes in Gene Delivery, CRC Press, 1997.
[122] R. Banerjee, Liposomes: applications in medicine, J. Biomater, 16 (2001) 3-21.
[123] A. Samad, Liposomal drug delivery systems: an update review, Curr. Drug Deliv, 4 (2007) 297-305.
[124] A.A.K.a.V.P. Torchilin, Enhanced transfection of tumor cells in vivo using “Smart” pH-sensitive TAT-modified pegylated liposomes, J. Drug Target., 15 (2007) 538-545.
[125] H. Leong-Poi, Therapeutic arteriogenesis by ultrasound-mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle, Circ. Res., 101 (2007) 295-303.
[126] X. Zheng, Preparation and characterization of magnetic cationic liposome in gene delivery, Int. J. Pharm., 366 (2009) 211-217.
[127] G. Wu, Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells, J. Am. Chem. Soc., 130 (2008) 8175-8177.
[128] L.W.a.D. Hoekstra, Cationic lipids, lipoplexes and intracellular delivery of genes, J. Control. Release, 116 (2006) 255-264.
[129] B. Ma, Lipoplex morphologies and their influences on transfection efficiency in gene delivery, J. Control. Release, 123 (2007) 184-194.
[130] S.-Y. Lin, W.-H. Hsu, J.-M. Lo, H.-C. Tsai, G.-H. Hsiue, Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery, Journal of Controlled Release, 154 (2011) 84-92.
[131] J. Ma, M.C. Defrances, C. Zou, C. Johnson, R. Ferrell, R. Zarnegar, Somatic mutation and functional polymorphism of a novel regulatory element in the HGF gene promoter causes its aberrant expression in human breast cancer, J Clin Invest, 119 (2009) 478-491.
[132] R.B. Fong, Z. Ding, C.J. Long, A.S. Hoffman, P.S. Stayton, Thermoprecipitation of streptavidin via oligonucleotide-mediated self-assembly with poly(N-isopropylacrylamide), Bioconjug Chem, 10 (1999) 720-725.
[133] H.C. Tsai, W.H. Chang, C.L. Lo, C.H. Tsai, C.H. Chang, T.W. Ou, T.C. Yen, G.H. Hsiue, Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging, Biomaterials, 31 (2010) 2293-2301.
[134] S.Y. Wong, J.M. Pelet, D. Putnam, Polymer systems for gene delivery--Past, present, and future, Progress in Polymer Science, 32 (2007) 799-837.
[135] A.B. Lowe, N.C. Billingham, S.P. Armes, Synthesis and Characterization of Zwitterionic Block Copolymers, Macromolecules, 31 (1998) 5991-5998.
[136] J.A. Cornell, How to Run Mixture Experiments for Product Quality. American Society for Quality Control, New York, 1990.
[137] A.D. Montgomery, , Design and Analysis of Experiments, Arizona State University, 1996.
[138] E. Lai, J.H. van Zanten, Evidence of lipoplex dissociation in liquid formulations, Journal of Pharmaceutical Sciences, 91 (2002) 1225-1232.
[139] S.J. Eastman, M.J. Lukason, J.D. Tousignant, H. Murray, M.D. Lane, J.A. St George, G.Y. Akita, M. Cherry, S.H. Cheng, R.K. Scheule, A concentrated and stable aerosol formulation of cationic lipid:DNA complexes giving high-level gene expression in mouse lung, Hum Gene Ther, 8 (1997) 765-773.
[140] S. Pasche, J. Voros, H.J. Griesser, N.D. Spencer, M. Textor, Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces, J Phys Chem B, 109 (2005) 17545-17552.
[141] R.C. May, L.M. Machesky, Phagocytosis and the actin cytoskeleton, J Cell Sci, 114 (2001) 1061-1077.
[142] N. Nishiyama, K. Kataoka, Nanostructured Devices Based on Block Copolymer Assemblies for Drug Delivery: Designing Structures for Enhanced Drug Function
Polymer Therapeutics II, in: R. Satchi-Fainaro, R. Duncan (Eds.), Springer Berlin / Heidelberg, 2006, pp. 67-101.
[143] H.-Y. Xue, H.-L. Wong, Solid Lipid–PEI Hybrid Nanocarrier: An Integrated Approach To Provide Extended, Targeted, and Safer siRNA Therapy of Prostate Cancer in an All-in-One Manner, ACS Nano, 5 (2011) 7034-7047.
[144] O. Meyer, D. Kirpotin, K. Hong, B. Sternberg, J.W. Park, M.C. Woodle, D. Papahadjopoulos, Cationic Liposomes Coated with Polyethylene Glycol As Carriers for Oligonucleotides, J. Biol. Chem., 273 (1998) 15621-15627.
[145] J.P. Vigneron, N. Oudrhiri, M. Fauquet, L. Vergely, J.C. Bradley, M. Basseville, P. Lehn, J.M. Lehn, Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukaryotic cells, Proceedings of the National Academy of Sciences, 93 (1996) 9682-9686.
[146] Y. Yamazaki, M. Nango, M. Matsuura, Y. Hasegawa, M. Hasegawa, N. Oku, Polycation liposomes, a novel nonviral gene transfer system, constructed from cetylated polyethylenimine, Gene Ther., 7 (2000) 1148-1155.
[147] U. Kishore, K.B.M. Reid, C1q: Structure, function, and receptors, Immunopharmacology, 49 (2000) 159-170.
[148] J.R. Dunkelberger, W.-C. Song, Complement and its role in innate and adaptive immune responses, Cell Res, 20 (2009) 34-50.
[149] R.A. Elbarbary, H. Takaku, M. Tamura, M. Nashimoto, Inhibition of vascular endothelial growth factor expression by TRUE gene silencing, Biochem Biophys Res Commun, 379 (2009) 924-927.
[150] J.F. Kukowska-Latallo, K.A. Candido, Z. Cao, S.S. Nigavekar, I.J. Majoros, T.P. Thomas, L.P. Balogh, M.K. Khan, J.R. Baker, Nanoparticle Targeting of Anticancer Drug Improves Therapeutic Response in Animal Model of Human Epithelial Cancer, Cancer Research, 65 (2005) 5317-5324.
[151] P.-L. Lu, Y.-C. Chen, T.-W. Ou, H.-H. Chen, H.-C. Tsai, C.-J. Wen, C.-L. Lo, S.-P. Wey, K.-J. Lin, T.-C. Yen, G.-H. Hsiue, Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery, Biomaterials, 32 (2011) 2213-2221.
[152] B.L. Bass, The short answer, Nature, (2001) 428-429.
[153] H. Kawasaki, K. Taira, Short hairpin type of dsRNAs that are controlled by tRNAVal promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells Nucleic Acids Research, 31 (2003) 700-707.
[154] K. Berg, J. Moan, Lysosomes as photochemical targets, Int. J. Cancer, 59 (1994) 814- 822.
[155] J. Moan, K. Berg, H. Anholt, K. Madslien, Sulfonated aluminium phthalocyanines as sensitizers for photochemotherapy. Effects of small light doses on localization, dye fluorescence and photosensitivity in V79 cells, Int. J. Cancer, 58 (1994) 865- 870.
[156] K. Berg, P.K. Selbo, L. Prasmickaite, K.S. T.E. Tjelle, G.G. J. Moan, Ø. Fodstad, S. Kjølsrud, H. Anholt, G.H. Rodal, S.K. Rodal, A. Høgset, Photochemical internalization: a novel technology for delivery of macromolecules into cytosol, Cancer Res., 59 (1999) 1180-1183.
[157] M. S, G. RN, M. FR, Endocytosis, Physiol Rev, 77 (1997) 759-803.
[158] P.K. Selbo, M.G. Rosenblum, L.H. Cheung, W. Zhang, K. Berg, Multi-Modality Therapeutics with Potent Anti-Tumor Effects: Photochemical Internalization Enhances Delivery of the Fusion Toxin scFvMEL/rGel, PLoS ONE, 4 (2009) e6691.
[159] S. Oliveira, M.M. Fretz, A. Høgset, G. Storm, R.M. Schiffelers, Photochemical internalization enhances silencing of epidermal growth factor receptor through improved endosomal escape of siRNA, Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768 (2007) 1211-1217.
[160] H.I. Pass, Photodynamic Therapy in Oncology: Mechanisms and Clinical Use, Journal of the National Cancer Institute, 85 (1993) 443-456.
[161] W.-D. Jang, N. Nishiyama, G.-D. Zhang, A. Harada, D.-L. Jiang, S. Kawauchi, Y. Morimoto, M. Kikuchi, H. Koyama, T. Aida, K. Kataoka, Supramolecular Nanocarrier of Anionic Dendrimer Porphyrins with Cationic Block Copolymers Modified with Polyethylene Glycol to Enhance Intracellular Photodynamic Efficacy, Angewandte Chemie, 117 (2005) 423-427.
[162] L. Prasmickaite, A. Hogset, P.K. Selbo, B.O. Engesaeter, M. Hellum, K. Berg, Photochemical disruption of endocytic vesicles before delivery of drugs: a new strategy for cancer therapy, Br J Cancer, 86 (2002) 652-657.
[163] K. Berg, A. Høgset, L. Prasmickaite, A. Weyergang, A. Bonsted, A. Dietze, P.-J. Lou, S. Bown, O.-J. Norum, H.M.T. Møllergård, P.K. Selbo, Photochemical internalization (PCI): A novel technology for activation of endocytosed therapeutic agents, Medical Laser Application, 21 (2006) 239-250.