研究生: |
廖英蘭 Liao, Ying-Lan |
---|---|
論文名稱: |
寬射束電腦斷層輻射劑量的研究 Radiation Dosimetry of Wide Collimation Width Computed Tomography |
指導教授: |
莊克士
Chuang, Keh-Shih 蔡惠予 Tsai, Hui-Yu |
口試委員: |
田雨生
Yeu-Sheng Tyan 許靖涵 Ching-Han Hsu 許芳裕 Fang-Yuh Hsu |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 寬射束電腦斷層 、電腦斷層劑量指標 、平衡劑量 、套管游離腔 、輻射底片 、螺旋掃描 、動態體積掃描 |
外文關鍵詞: | wide beam computed tomography, computed tomography dose index, equilibrium dose, thimble ionization chamber, radiochromic film, helical scan, dynamic wide volume scan |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為評估寬射束電腦斷層(computed tomography, CT)掃描儀的輻射劑量,研究分為三個部分:(1)傳統CT劑量指標(CT dose index, CTDI)在寬射束CT劑量低估情形並且建立不同劑量計的量測方法;(2)根據美國醫學物理師學會工作小組第111號報告,在320切CT掃描儀進行實驗,使用套管游離腔(thimble ionization chamber)與更長的CTDI假體串接,根據報告計算新的劑量指標:平衡劑量(equilibrium dose, )、平衡劑量–螺距比乘積(equilibrium dose-pitch product, )與平衡劑量常數(equilibrium dose constant, );(3)探討新的CT劑量最佳化技術,包含自動管電流調控(automatic tube current modulation, ATCM)、疊代演算法在劑量降低與雜訊抑低技術與新的動態體積掃描模式在臨床常規檢查的輻射劑量分佈情形。將寬射束電腦斷層輻射劑量的研究成果提供國內外相同研究領域的團隊作為參考依據,以期改善寬射束電腦斷層的劑量評估方法。
The purpose of the study was to (1) estimate the amount of underestimation of radiation dose using conventional CT dose index theory; (2) to implement the methodology of wide beam CT dosimetry suggested by report of AAPM task group 111 on a 320-detector row CT scanner. The derived values of equilibrium dose, equilibrium dose-pitch product, and equilibrium dose constant and related dose indexes using a thimble ionization chamber and 600 mm length cylindrical phantom were provided as reference tables for users who has the same CT scanner. (3) to assess the radiation dose distribution of clinical CT examinations with latest CT dose and image quality optimization techniques which included automatic tube current modulation (ATCM) techniques, adaptive iterative dose reduction 3D (AIDR3D), and dynamic wide volume scan mode. The database of our study can be an reference for improving the radiation dose measurement for wide collimation width computed tomography.
1 National Council on Radiation Protection, NCRP Report No. 160: Ionizing Radiation Exposure of the Population of the United States (n.d.).
2 U.S.F.A.D. Administration and C.F.D.A.R. Health, “Initiative to Reduce Unnecessary Radiation Exposure from Medical Imaging,” 1–12 (2010).
3 D.D. Cody et al., “AAPM Medical Physics Practice Guideline 1.a: CT Protocol Management and Review Practice Guideline,” Journal of Applied Clinical Medical Physics 14(5), (2013).
4 E.P. Tamm, X.J. Rong, D.D. Cody, R.D. Ernst, N.E. Fitzgerald, and V. Kundra, “Quality Initiatives: CT Radiation Dose Reduction: How to Implement Change without Sacrificing Diagnostic Quality,” Radiographics 31(7), 1823–1832 (2011).
5 A. Sodickson et al., “Exposing Exposure: Automated Anatomy-specific CT Radiation Exposure Extraction for Quality Assurance and Radiation Monitoring.,” Radiology (2012).
6 T.B. Shope, R.M. Gagne, and G.C. Johnson, “A method for describing the doses delivered by transmission x-ray computed tomography,” Med Phys 8(4), 488–495 (1981).
7 M.F. McNitt-Gray, “AAPM/RSNA Physics Tutorial for Residents: Topics in CT. Radiation dose in CT,” Radiographics 22(6), 1541–1553 (2002).
8 A.L. Baert, D. Tack, and P.A. Gevenois, Radiation Dose from Adult and Pediatric Multidetector Computed Tomography (Springer, 2007).
9 M. Dewey et al., “Noninvasive coronary angiography by 320-row computed tomography with lower radiation exposure and maintained diagnostic accuracy: comparison of results with cardiac catheterization in a head-to-head pilot investigation,” Circulation 120(10), 867–875 (2009).
10 J. Blobel, J. Mews, J.D. Schuijf, and W. Overlaet, “Determining the radiation dose reduction potential for coronary calcium scanning with computed tomography: an anthropomorphic phantom study comparing filtered backprojection and the adaptive iterative dose reduction algorithm for image reconstruction.,” Invest Radiol 48(12), 857–862 (2013).
11 M.Y. Chen, S.M. Shanbhag, and A.E. Arai, “Submillisievert median radiation dose for coronary angiography with a second-generation 320-detector row CT scanner in 107 consecutive patients.,” Radiology 267(1), 76–85 (2013).
12 E. Siebert et al., “Neuroimaging by 320-row CT: is there a diagnostic benefit or is it just another scanner? A retrospective evaluation of 60 consecutive acute neurological patients.,” Neurol Sci 31(5), 585–593 (2010).
13 S. Diekmann et al., “Dose exposure of patients undergoing comprehensive stroke imaging by multidetector-row CT: comparison of 320-detector row and 64-detector row CT scanners.,” American Journal of Neuroradiology 31(6), 1003–1009 (2010).
14 J.M. Boone, “The trouble with CTDI[sub 100],” Med Phys 34(4), 1364 (2007).
15 R.L. Dixon, “A new look at CT dose measurement: beyond CTDI,” Med Phys 30(6), 1272–1280 (2003).
16 D.J. Brenner, “Is it time to retire the CTDI for CT quality assurance and dose optimization?,” Med Phys 32(10), 3225–3226 (2005).
17 D.J. Brenner, “It is time to retire the computed tomography dose index (CTDI) for CT quality assurance and dose optimization. For the proposition,” Med Phys 33(5), 1189–1190 (2006).
18 AAPM, “Report of AAPM Task Group 111: The Future of CT Dosimetry‘Comprehensive Methodology for the Evaluation of Radiation Dose in X-Ray Computed Tomography’,” 28 (2010).
19 I.E. Commission, Medical electrical equipment. Part 2-44, Particular requirements for the safety of x-ray equipment for computed tomography (International Standard IEC, 2002).
20 O. Rampado, E. Garelli, and R. Ropolo, “Computed tomography dose measurements with radiochromic films and a flatbed scanner,” Medical Physics 37, 189 (2010).
21 Y.-L. Liao, H.C. Kao, K.S. Chuang, C.P. Chen, and H.Y. Tsai, “CT dose estimation using Gafchromic XR-CT film: Models comparison,” Radiation Measurements 46(12), 2052–2055 (2011).
22 J. Geleijns, M. Salvado Artells, P.W. de Bruin, R. Matter, Y. Muramatsu, and M.F. McNitt-Gray, “Computed tomography dose assessment for a 160 mm wide, 320 detector row, cone beam CT scanner,” Phys. Med. Biol. 54(10), 3141–3159 (2009).
23 S.R. Jackson, S. Ahmad, Y. Hu, and C. Ruan, “Evaluation of different techniques for CT radiation profile width measurement,” Journal of Applied Clinical Medical Physics 14(4), (2013).
24 A.P. Mourão, R.G. Gonçalves Jr, and T.C. Alonso, “Dose profile variation with pitch in head CT scans using gafchromic films,” europment.org.
25 U. Oren, C.L. Raaf, and S. Mattsson, “Gafchromic film as a fast visual indicator of radiation exposure of first responders,” Radiat Prot Dosimetry 150(1), 119–123 (2012).
26 T. Giaddui, Y. Cui, J. Galvin, W. Chen, Y. Yu, and Y. Xiao, “Characteristics of Gafchromic XRQA2 films for kV image dose measurement.,” Med Phys 39(2), 842–850 (2012).
27 M. Soderberg and M. Gunnarsson, “Automatic exposure control in computed tomography--an evaluation of systems from different manufacturers.,” Acta Radiol 51(6), 625–634 (2010).
28 D. Gutierrez, S. Schmidt, A. Denys, P. Schnyder, F.O. Bochud, and F.R. Verdun, “CT-automatic exposure control devices: What are their performances?,” Nuclear Inst. and Methods in Physics Research, A 580(2), 990–995 (2007).
29 M.K. Kalra et al., “Techniques and Applications of Automatic Tube Current Modulation for CT,” Radiology 233(3), 649–657 (2004).
30 Y. Ohno et al., “Adaptive iterative dose reduction using 3D processing for reduced- and low-dose pulmonary CT: comparison with standard-dose CT for image noise reduction and radiological findings.,” American Journal of Roentgenology 199(4), W477–85 (2012).
31 A. Gervaise et al., “CT image quality improvement using Adaptive Iterative Dose Reduction with wide-volume acquisition on 320-detector CT.,” Eur Radiol 22(2), 295–301 (2012).
32 Y. Yamada et al., “Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques,” European Journal of Radiology 81(12), 4185–4195 (2012).
33 D.S.M.N.R. z, K. Murphy, and P. Gailloud, “320-Multidetector row whole-head dynamic subtracted CT angiography and whole-brain CT perfusion before and after carotid artery stenting: Technical note,” European Journal of Radiology 74(3), 413–419 (2010).
34 J.J.S. Shankar, C. Lum, and M. Sharma, “Whole-Brain Perfusion Imaging With 320-MDCT Scanner: Reducing Radiation Dose by Increasing Sampling Interval,” American Journal of Roentgenology 195(5), 1183–1186 (2010).
35 A. Khan, K. Nasir, F. Khosa, A. Saghir, S. Sarwar, and M.E. Clouse, “Prospective gating with 320-MDCT angiography: effect of volume scan length on radiation dose.,” American Journal of Roentgenology 196(2), 407–411 (2011).
36 C.-M. Chen, S.-Y. Chu, M.-Y. Hsu, Y.-L. Liao, and H.Y. Tsai, “Low-tube-voltage (80 kVp) CT aortography using 320-row volume CT with adaptive iterative reconstruction: lower contrast medium and radiation dose.,” Eur Radiol 24(2), 460–468 (2014).
37 E. Lee, S. Lamart, M.P. Little, and C. Lee, “Database of normalised computed tomography dose index for retrospective CT dosimetry.,” J. Radiol. Prot. 34(2), 363–388 (2014).