簡易檢索 / 詳目顯示

研究生: 陳韋全
Chen, Wei-Chuan
論文名稱: 以角解析光電子能譜及低能量電子繞射儀研究鉛薄膜成長在鍺(111)之介面效應
Study of the interfacial effects on the growth of Pb thin films on Ge(111) by ARPES and LEED
指導教授: 唐述中
Tang, Shu-Jung
口試委員: 鄭弘泰
Jeng, Horng-Tay
鄭澄懋
Cheng, Cheng-Maw
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 81
中文關鍵詞: 鉛薄膜角解析光電子能譜低能量電子繞射量子井態莫爾條紋
外文關鍵詞: Pb film, ARPES, LEED, Quantum well state, Moiré pattern
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以低能量電子繞射(LEED)與角解析光電子能譜(ARPES)來探討鉛薄膜成長在鉛/鍺(111)-(√3×√3)R30˚-β phase與金/鍺(111)-(√3×√3)R30˚的介面現象與電子結構。
    晶格匹配對於外延成長薄膜是一個重要的因素,鉛與鍺的晶格常數分別為4.95 Å與5.658 Å相差約13%,過大的晶格不匹配會產生應力使薄膜無法層狀成長(layer-by-layer),但我們成功的分別在鉛/鍺(111)-(√3×√3)R30˚-β phase與金/鍺(111)-(√3×√3)R30˚上成長出大面積均勻且平整的鉛薄膜。鉛原子與金原子的潤濕層在鍺(111)面上都形成(√3×√3)R30˚的結構。然而,我們發現鉛薄膜在成長在這兩個潤濕層上的晶格結構是不同的。
    對於鉛薄膜成長在鉛/鍺(111)-(√3×√3)R30˚-β phase上,我們發現1 ML的鉛薄膜會沿著鍺基底的晶面方向成長,且從LEED繞射圖觀察到鉛薄膜與鍺基底形成莫爾結構(Moiré superstructures),經由低能電子繞射圖計算得到莫爾條紋的週期為25 Å和由鉛與鍺原子結構模型預測28 Å,相差約10%的形變量。 而鉛薄膜成長在金/鍺(111)-(√3×√3)R30˚系統中,觀察不同厚度鉛薄膜的低能量電子繞射圖只有顯現單一領域的鉛(1×1)結構。不同於鉛薄膜成長在鉛/鍺(111)上當鉛薄膜厚度超過2 ML時,除了鉛(1×1)結構外還產生鉛(1×1)旋轉三十度的結構。
    此外,我們還發現鉛薄膜從低溫升溫至室溫後,鉛薄膜與潤濕層會互相擴散形成鉛金合金,經由角解析光電子能譜測量ΓK與ΓM方向的能帶結構,在布里淵區中心(Brillouin Zone Center) Γ 觀察到兩個Dirac-cone-like state。在表面布里淵區的邊緣M點,有兩個拋物線能帶相互交叉,這意味著一個巨大的Rashba分裂。


    In this thesis, low energy electron diffraction (LEED) and angle-resolved photoemission (ARPES) were used to study the interfacial phenomena and electronic structure of Pb film grown on the reconstructed surfaces, Pb/Ge(111)-β phase and Au/Ge(111)-(√3×√3)R30˚.
    Lattice match is an important factor for epitaxial growth. The lattice mismatch between the Pb (a = 4.95 Å) and Ge (a = 5.65 Å), is 13%. Such large lattice mismatch between Pb and Ge causes a strong strain on the Pb adlayer, which should hinder the layer-by-layer growth of Pb films. On the contrary, we succeeded to produce atomically uniform Pb films on Pb/Ge(111)-β phase and Au/Ge(111)-(√3×√3)R30˚, respectively. However, we found that the lattice structures grown on these two wetting layers are different.

    For Pb films on Pb/Ge(111)-β phase, initially at 1 ML, Pb films grow in the same direction as the Ge(111) substrate, forming a Moiré superstructures as revealed by LEED pattern. The periodicity of the Moiré structure determined from LEED pattern is 25 Å, differed from the value 28 Å derived from the bulk lattices of Pb and Ge, indicating a 10% strain.

    For Pb films grown on Au/Ge(111)-(√3×√3) R30˚, the corresponding LEED patterns showed the one-domain Pb (1×1) structure, being independent of Pb films thickness. This is different from Pb films on Pb/Ge(111)-β phase which has one more different lattice structure, Pb(1×1)- R30˚, as the thickness increases above 2 ML. In addition, we found that Pb films would interdiffuse with Au to form a unique alloy phase after being annealed to room temperature from 140 K, as revealed by the distinct LEED pattern and ARPES spectrums. The band dispersions were measured along two symmetry directions, ΓK and ΓM. At the surface zone center,Γ, we observed two Dirac-cone-like bands. And unusually, two parabolic bands cross each other at the surface zone boundary of Ge(111),M, implying a giant Rashba splitting

    目錄 第一章 緒論 1 第二章 基礎理論 3 2.1 晶格 3 2.2 倒晶格 7 2.3 表面 9 2.4 莫爾條紋(Moiré pattern) 11 2.5 薄膜生長 13 2.5.1 薄膜生長模式 13 2.5.2 薄膜厚度 14 2.6 表面態 15 2.7 量子井態 18 第三章 實驗儀器與原理 21 3.1 超高真空系統 21 3.3.1 真空簡介 21 3.3.2 實驗環境-超高真空系統配置 22 3.3.3 幫浦及原理介紹 25 3.3.4 烘烤 32 3.3.5 除氣 34 3.3.6 殘餘氣體分析儀 35 3.2 離子濺射槍 36 3.3 薄膜蒸鍍所使用之設備 38 3.3.1 蒸鍍槍 38 3.3.2 膜厚儀 39 3.4 低能電子繞射儀 40 3.5 光電子能譜簡介 43 3.5.1 光電效應理論模型 45 3.5.2 角解析光電子能譜 49 3.5.3 電子能量分析儀 51 3.5.4 接收模式 54 3.6 光源 55 3.6.1 紫外光光源 55 3.6.2 同步輻射光源 57 第四章 鉛薄膜成長在鉛/鍺(111) 59 4.1 簡介 59 4.2 樣品準備 59 4.2.1 清潔鍺(111)表面 59 4.2.2 製作鉛/鍺(111)- (√3×√3)R30⁰-β的潤濕層 63 4.2.3 沉積鉛薄膜成長於鉛/鍺(111)- (√3×√3)R30⁰-β 64 4.3 實驗結果與討論 65 4.3.1 鉛薄膜結構隨厚度的變化 65 4.3.2 莫爾條紋分析 67 第五章 鉛薄膜成長在金/鍺(111) 70 5.1 簡介 70 5.2 樣品準備 70 5.2.1 清潔鍺(111)表面 70 5.2.2 製作金/鍺(111)- (√3×√3)R30⁰的潤濕層 70 5.2.3 沉積鉛薄膜成長於金/鍺(111)- (√3×√3)R30⁰ 71 5.3 實驗結果與討論 72 5.3.1 鉛薄膜結構隨厚度的變化 72 5.3.2 角解析光電子能譜分析 74 5.3.3 QWS Phase shift 76 5.3.4 鉛薄膜從低溫回到室溫的變化 77 第六章 結論 79 參考文獻 80

    1. Z. Zhang, Q. Niu, and C.K. Shih, Phys. Rev. Lett. 80, 5381 (1998).
    2. T.C. Chiang, Surf. Sci. Rep. 39, 181-235 (2000)
    3. J.J. Paggel, C.M. Wei, M.Y. Chou, D.A. Luh, T. Miller, T.C. Chiang, Phys. Rev. B 66 ,233403 (2001)
    4. D.A. Luh, T. Miller, J.J. Paggel, M.Y. Chou, T.C. Chiang, Science 292, 1131 (2001)
    5. Guo et al., Science 306, 1915-1917 (2004)
    6. T.C. Chiang, Science 306, 1990 (2004)
    7. Smith et al., Science 273, 226-228 (1996)
    8. T. Miller, A. Samsavar, G. E. Franklin, and T.-C. Chiang, Phys. Rev. Lett. 61, 1404 (1988).
    9. A. Beckmann, M. Klaua, and K. Meinel, Phys. Rev. B 48, 1844–1852 (1993)
    10. S.-J. Tang, W.-K. Chang, Y.-M. Chiu, H.-Y. Chen, C.-M. Cheng, K.-D. Tsuei, T. Miller, and T.-C. Chiang, Phys. Rev. B 78, 245407 (2008).
    11. Kan Nakatsuji, Ryota Niikura, Yuki Shibata, Massamichi Yamada , Takushi Iimori ,and Foumio Komori, Phys. Rev. B 80,081406 (2009)
    12. A. Crottini, D. Cvetko, L. Floreano, R. Gotter, A. Morgante, and F. Tommasini, Phys. Rev. Lett. 79, 1527–1530 (1997)
    13. Yu Jia, Biao Wu, H. H. Weitering, and Zhenyu Zhang, Phys. Rev. B 74, 035433 (2006)
    14. C.-S. Jiang, S.-C. Li, H.-B. Yu, D. Eom, X.-D. Wang, P. Ebert, J.-F. Jia, Q.-K. Xue, and C.-K. Shih, Phys. Rev. Lett. 92, 106104 (2004).
    15. Smith et al., Science 273, 226-228 (1996)
    16. T.-C. Chiang, Surface Science Reports 39, 181-235 (2000)
    17. Charles Kittel, Introduction to solid state physics,8th ed. ISBN 986-412-348-3
    18. E.W. Plummer, W. Eberhardt, Angle-Resolved Photoemission as a Tool for the Study of Surface
    19. Hans Lüth , Solid Surfaces, Interfaces and Thin Films, ISBN 978-3642135910
    20. I. E. Tamm, Phys. Z. Soviet Union 1, 733.(1932)
    21. William Shockley, Phys. Rev. 56, 317–323 (1939)
    22. S.Mathias, M Wessendorf, W. Passlack, M. Aeschlimann and M. Bauer, Appl. Phys. A 82, 439–445 (2005)
    23. 蘇青森 (2003)。真空技術精華。臺北市:五南。ISBN 978-957-11-3478-9
    24. Varian TriScroll 600 Oil-Free Dry Scroll Vacuum Pump Users Manual
    25. Varian V550 Navigator Series Turbo Pump Manual
    81
    26. Varian Titanium Sublimation Pump Manual
    27. SRS RGA200 Users Manual
    28. Thermo scientific Ion Gun EX03 Manual
    29. VG SCIENTA R3000 Users Manual
    30. HIS 13 VUV Lamp Manual
    31. 同步輻射月刊
    32. S. -J. Tang, Chang-Yeh Lee, Chien-Chung Huang, Tay- Rong Chang, Cheng-Maw Cheng, Ku-Ding Tsuei, and H. -T. Jeng, Appl. Phys. Lett. 96, 103106 (2010)
    33. S. -J. Tang, Chang-Yeh Lee, Chien-Chung Huang, Tay-Rong Chang, Cheng-Maw Cheng, Ku-Ding Tsuei, H.-T. Jeng,V. Yeh, and Tai-Chang Chiang, Phys. Rev. Lett., 107, 066802 (2011)
    34. Ohtsubo Y, Muto H, Yaji K, Hatta S, Okuyama H, Aruga T., J Phys Condens Matter. 2011 Nov 2;23(43):435001.
    35. M. Hupalo, V. Yeh, T. L. Chan, C. Z. Wang, K. M. Ho, and M. C. Tringides, Phys Rev. B 71, 193408 (2005)
    36. 梁立言,以鍺(111)及鍺(100)為基底之鉛薄膜熱穩定度比較。國立清華大學碩士學位論文(2011)
    37. Yinghui Yu, Zhe Tang, Ying Jiang, Daisuke Fujita, Surface Science 602 Issue 21,, Pages 3358–3363 (2008)
    38. Yun Qi, Weisheng Yang, Xucun Ma, Shuaihua Ji, Yingshuang Fu, Yanfeng Zhang, Jin-Feng Jia and Qi-Kun Xue, J. Phys.: Condens. Matter 19 136005 (2007)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE