研究生: |
楊學安 Hsueh-An Yang |
---|---|
論文名稱: |
電磁感應渦電流於微機電系統之分析與應用 Analysis and Application of Electromagnetic |
指導教授: |
方維倫
Weileun Fang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 187 |
中文關鍵詞: | 渦電流 、電磁感應 、微系統封裝 、微焊接技術 、勞倫茲力 、微電鑄技術 |
外文關鍵詞: | Eddy current, Magnetic induction, MEMS package, Micro welding, Lorentz force, Electroform |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以外部全域性晶圓級磁場,在晶片局部區域上感應產生渦電流,作為研究主軸,並發展出相關應用。首先,本論文以理論及實驗方式,探討當元件縮小之後,渦電流對微結構幾何形狀變化之行為特性,此外也輔以材料的特性,使晶片在高功率交變磁場中,由渦電流造成局部感應加熱。其次,本論文針對微尺度下渦電流之特性,發展出三種應用:(1) 電磁感應局部加熱之微機電元件晶圓級封裝。以微電鍍鎳之區域感應形成渦電流,並快速產生高溫使焊料回焊達到晶圓級焊料接合;(2) 三維微結構之出平面定位及焊接。利用交變磁場抬升及定位微結構,同時在晶片上產生局部高溫焊接區,再以微焊接方式將出平面抬升結構焊接固定;(3) 無線圈式勞倫茲力掃描器。渦電流與外部永久磁鐵的搭配亦可產生出勞倫茲力,這個想法可達到以非接觸方式產生電場以及磁場,以渦電流代替致動區域電流佈線線圈,以此方式應用於以勞倫茲力驅動之微掃描面鏡,由於感應渦電流屬於面電流,會感應並分佈於電鍍鎳微鏡面上,這使得勞倫茲力分佈於整個鎳微鏡面上,而降低製程複雜性提高元件良率,並可以較小的功率驅動產生較大的位移。
Eddy current is a promising induction heating and actuation approach for MEMS processes and devices. This study has discussed the scale effect of eddy current for mirco electroplating microstructures through the analytical and experimental means. The results show that the induction heating rising temperature varies with the in-plane surface area of microstructure and the relative permeability of thin-film materials. Moreover, the shape of microstructure also leads to the different of rising temperature. Thus, localized heating is achieved on substrate by applying an external high frequency magnetic field. It is also easy to tune the heating temperature by varying the area of magnetic film; in other words, the photolithography can define various temperature regions on substrate.
Three applications are presented in this study: (1) Localized heating for wafer level packaging. The electroplated thick film acts as a heater and a spacer. It takes only several seconds to complete the solder reflow and bonding process, and hermetic seal of the packaged device is achieved. The bonding strength is up to 18 MPa. The integration the MUMPs devices with this packaging technique have been demonstrated; (2) Localized positioning and welding for 3D microstructures. The lifting and welding can be localized by the magnetic film. Moreover, a global wafer level process can be achieved by the magnetic field; (3) Coil-less Lorentz force for optical scanner. The eddy current is induced in ferromagnetic material by solenoid, thus, the complicated coil routing and insulation layer deposition for current is prevented. This study demonstrated a 2D scanning mirror with 20 mechanical scan angles when operated at 100mV and 0.016mA.
[1] J. W. Judy, “Batch-Fabricated Terromagnetic Microactuators with Silicon Flexures”, Ph.D thesis, 1996
[2] http://www.inductionatmospheres.com
[3] W. H. Ko, J. T. Suminto, and G. J. Yeh, Bonding techniques for microsensors, Micromachining and Micropackaging of Transducers, New York, NY: Elsevier, 1985
[4] K. E. Peterson and P. Barth, “Silicon fusion bonding for pressure sensors,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 144–147, 1988
[5] G. H. He, L. Lin, and Y. T. Cheng, “Localized CVD bonding for MEMS packaging,” International Conference on Solid-State Sensors and Actuators Transducers ’99, Sendai, Japan, 1999
[6] Y. T. Cheng, W. T. Hsu, L. Lin, C. T. Nguyen, and K. Najafi, “Vacuum packaging technology using localized aluminum/silicon-to-glass bonding,” IEEE International Conference on Microelectromechanical Systems (MEMS), Interlaken, Switzerland, 2001
[7] L. Lin, “MEMS post-packaging by localized heatine and bonding,” IEEE Trans. Adv. Packag., 23, pp. 608–616, 2000
[8] N. K. Budraa, H. W. Jackson, M. Barmatz, W. T. Pike, and J. D. Mai, “Low pressure and low temperature hermetic wafer bonding using microwave heating,” IEEE International Conference on Microelectromechanical Systems, Orlando, FL, pp. 490–492, 1999
[9] K. F. Lei, W. J. Li, N. Budraa, and J. D. Mai, “Microwave bonding of polymer-based substrates for micro/nano fluidic applications,” International Conference on Solid-State Sensors and Actuators Transducers ’03, Boston, MA, pp. 1335–1338, 2003
[10] A. Cao, M. Chiao and Liwei Lin, “Selective and Localized Wafer Bonding Using Induction Heating,” Technical Digest of Solid-State Sensors and Actuators Workshop, pp. 153-156, Hilton Head Island, June 2002
[11] A. Cao and Liwei Lin, “Selective Induction Heating for MEMS Packaging and Fabricatoin,” ASME International Mechanical Engineering Congress and Exposition, Proceedings of the MEMS Symposia, 2, New York, NY, 2001
[12] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Three-dimensional micro-Fresnel optical elements fabricated by micromachining technique,” Electronics Letters, 30, pp. 448-449, 1994
[13] T. Ebefors, E. Kälvesten, and G. Stemme, “Three dimensional silicon triple-hot wire anemometer based on polyimide joints,” Proceeding of the IEEE MEMS’98 Workshop, Heidelberg, Germany, January, pp. 93-98, 1998
[14] L. Fan, R. T. Chen, A. Nespola, and M. C. Wu,” Universal MEMS platforms for passive RF components: suspended inductors and variable capacitors,” IEEE MEMS’98 Workshop, Heidelberg, Germany, January, pp.29-33, 1998
[15] C. Liu, T. Tsao, and Y. Tai,“ Out-of-plane permalloy magnetic actuators for delta-wing control,” IEEE Micro Electromechanical Sys. Workshop, pp. 7-12, 1995
[16] J. Judy and R. S. Muller,“Magnetic actuated, addressable microstructures,” J. of Microelectromech. Syst., 6, pp. 249-56, 1997
[17] Y. Yi and C. Liu,“Magnetic Actuation of Hinged Microstructures,” Journal of MEMS, 8, pp.10-17, 1999
[18] E. Iwase, S. Takeuchi, and I. Shimoyama, “Sequential Batch Assembly of 3-D Microstructures with Elastic Hinges by a Magnetic Field,” in Proc. IEEE MEMS Conf., pp. 188-191, 2002
[19] V. Kaajakari, and A. Lal, “Pulsed ultrasonic release and assembly of micromachines,” The 10th International Conference on Solid-State Sensors and Actuators Transducers'99, Sendai, Japan, pp. 212-215, 1999
[20] V. Kaajakari and A. Lal, “Thermo-kinetic actuation for hinged structure batch microassembly,” Proceeding of the IEEE MEMS’02 Workshop, Las Vegas, NV, January, pp. 196-199, 2002
[21] T. A. McMahon and J. T. Bonner, On Size and Life, New York, NY: Scientific American Books, 1983
[22] A. Singh, D. A. Horsley, M. B. Cohn, A. P. Pisano, and R. T. Howe, “Batch transfer of microstructures using flip-chip solder bump bonding,” The 9th International Conference on Solid-State Sensors and Actuators Transducers'97, Chicago, IL, June, pp. 265-268, 1997
[23] R. R. A. Syms, and E. M. Yeatman, “Self-assembly of three-dimensional microstructures using rotation by surface tension forces,” Electronics Letters, 29, pp. 662-664, 1993
[24] P. W. Green, R. R. A. Syms, and E. M. Yeatman, “Demonstration of three-dimensional microstructure self-assembly,” Journal of Microelectromechanical Systems, 4, pp. 170-176, 1995
[25] R.R.A. Syms, C. Gormley, and S. Blackstone, “Improving yield, accuracy and complexity in surface tension self-assembled MOEMS,” Sensors and Actuators A, 2839, pp. 1-11, 2000
[26] R. R. A. Syms, “Self-assembled 3-D silicon microscanners with self-assembled electrostatic drives,” IEEE Photonics Technology Letters, 12, pp. 1519-1521, 2000
[27] G.W. Dahlman and E. M.Yeatman, “HighQmicrowave inductors on silicon by surface tension self-assembly,” Inst. Elect. Eng. Electron. Lett., 36, pp. 1707–1708, 2000
[28] M. W. Judy, Y. H. Cho, R. T. Howe, A. P. Pisano, “Self-adjusting microstructures (SAMS),” Proceeding of the IEEE MEMS’91 Workshop, Nara, Japan, February, pp. 51-56, 1991
[29] V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles, and D. J. Bishop, “Lucent MicrostarTM Micromirror Array Technology for Large Optical Crossconnects,” Proceedings of SPIE, Santa Clara, CA, September, pp. 320-324, 2000
[30] Y. P. Ho, M. Wu, H. Y. Lin, and W. Fang, “A Robust and Reliable Stress-induced Self-assembly Supporting Mechanism for Optical Devices,” Microsystem Technologies, 11, pp. 214–220, 2004
[31] Sandia National Lab Process, http://www.sandia.gov/
[32] T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” Journal of Microelectromechanical Systems, 6, pp. 10-17, 1997
[33] E. Quévy, L. Buchaillot, and Dominique Collard, “3-D self-assembling and actuation of electrostatic microstructures,” IEEE Transactions on electron devices, 48, pp. 1833-1839, 2001
[34] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated hinges,” Sensors and Actuators A, 33, pp. 249-256, 1992
[35] N. Asada, H. Matsuki, K. Minami and M. Essashi, “Silicon micromachined two dimensional alvano optical scanner, ” IEEE Trans. Magn. , 30, pp 4647–4649, 1994
[36] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, K. Matsumoto “An Electromagnetic Optical Scanner With Polyamide-Based Hinges” Proc. IEEE Transducers’99, Sendai, Japan, 1999
[37] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, and K. Matsumoto, “A durable, shock-resistance electromagnetic optical scanner with polyimide-based hinges”, J. Microelectromech. Syst., 10, pp. 418-423, 2001
[38] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, and K. Matsumoto, “A mems electromagnetic optical scanner for a commercial confocal laser scanning microscope”, J. Microelectromech. Syst. 12, pp 243–251, 2003
[39] S. H. Ahn and Y. K. Kim, "Silicon scanning mirror of two DOF with compensation current routing", J. Micromechanics and Microengineering, 14, pp.1455-1461, 2004
[40] H. Benson, University Physics, John Wiley&Sons, Inc, 1996
[41] A. G. Guy, Introduction to Materials Science, New York, NY: McGraw Hill, 1972
[42] A. G. Guy, Essentials of materials science, New York, NY: McGraw Hill, 1976
[43] T. J. Fiske, H. Gokturk, and D. M. Kalyon, “Enhancement of the Relative Magnetic Permeability of Polymer Composites with Hybrid Particulate Fillers”, Journal of Applied Polymer Science, 65, pp. 1371-1377, 1997
[44] S. N. Talukdar and J. R. Bailey, “Hysteresis Models for System Studies,” IEEE Transaction on Power Apparatus and System, 95, pp. 1429-1434, 1976
[45] T. Loga, F. S. Chute, and F. E. Vermeulen, “ Simple Finite Element Solutions for Eddy Current Losses in Pipe-Type Cables”, Applied Comptuational Electromagnetic Society, 10, pp. 102-109, 1995
[46] K.Zakrzewski and F. Pietras, “ Method of Calculating the Electromagnetic Field and Power Losses in Ferromagnetic Materials, Taking Into Account Magnetic Hysteresiss,” Proc. IEE, 118, 1971
[47] S. N. Talukdar and J. R. Bailey, “Hysteresis Models for System Studies,” IEEE Transactions on Power Apparatus and System, 95, pp. 1429-1434, 1976
[48] Cullity, Introduction to Magnetic Materials, Addison-Wesley, Mass., 1972
[49] J. O. S. Pizarro and O. V. Trevisan, “Electrical Heating of Oil Reservoir Numerical Simulation and Field test Result,” Journal of Petroleum Technology, pp. 1320-1326, 1990
[50] H. Johnson and M. Graham, High-Speed Signal Propagation, 2003
[51] http://www.motorola.com/
[52] http://www.knowles.com/
[53] http://www.DLP.com/
[54] http://www.analog.com/
[55] W. T. Hsu, J. R. Clark, and C. T. C. Nguyen, “Mechanically temperature compensated flexural-mode micromechanical resonators,” Proc. International Electron Devices Meeting, San Francisco, CA, pp. 399–402, 2000
[56] K. Wang, Y. Yu, A. C. Wong, and C. T. C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” IEEE MEMS’99, Orlando, FL, pp. 453–458 , 1999
[57] F. Ayazi and K. Najafi,“ A HARPSS polysilicon vibrating ring gyroscope,” J. MEMS, 10, pp. 169–179, 2001
[58] M. Abe, E. Shinohara, K. Hasegawa, S. Murata, and M. Esashi, “Trident-type tuning fork silicon gyroscope by the phase difference detection,” IEEE MEMS’00, Miyazaki, Japan, pp. 508-513, 2000
[59] D. Stroehle, “On the penetration of water vapor into packages with cavities and on maximum allowable leak rates,” 15th Annual Proceedings, Reliability Physics Symposium, pp. 101-106, 1977
[60] T.Giorgi, “Getters and gettering,” Jap. J. Appl. Phys., 2, pp.53, 1974
[61] A. Roth, “Vacuum Technology,” Third Edition, 1989
[62] H. Henmi, S. Shoj, K. Yoshimi and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensors and Actuators A, 43, pp. 243-248, 1994
[63] M. R. Houston, R. T. Howe, and R. Maboudian, “Effect of hydrogen termination on the work of adhesion between rough polycrystalline silicon surfaces,” J. Appl. Physics., 81, pp. 3474-3483, 1997
[64] U. Srinivasan, M. R. Houston, R. T. Howe, “Alkyltrichlorosilane-Based Self Assembled Monolayer Films for stiction reduction in silicon micromachines,” J. of MEMS., 7, pp. 252-260, 1998
[65] D. M. Burn, and V. M. Bright, “Optical power induced damage to microelectromechanical mirrors,” Sensors and Actuators A, 70, pp6-14, 1988
[66] M. K. Lee, W. D. Cowan, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Aberration- correction results from a segmented microelectromechanical deformable mirror and a refractive lenslet array,” Optics Letters, 23, pp. 645-647, 1998
[67] W. Ko, J. Sumito, G. Yeh, Micromachining and Micropackaging of Transducers, Elsevier, Amsterdam, pp. 41–61, 1985
[68] Q. Y. Tong, U. Gosele, Semiconductor Wafer Bonding, Wiley, New York, 1999
[69] P. W. Barth, “Silicon fusion bonding for fabrication of sensors, actuators and microstructures,” Sensors and Actuators A, 23, pp. 919-926, 1990
[70] J. M. Noworolski, E. Klaassen, J. Logan, K Petersen, and N. I. Maluf, “Fabrication of SOI wafers with buried cavities using silicon fusion bonding and electrochemical etch back,” Sensors and Actuators A, 54, pp. 709-713, 1996
[71] W. P. Maszara, G. Goetz, A. Caviglia, J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys., 16, pp. 4943-4950, 1998
[72] K.Jonsson, J.Köhler, C.Hedlund, and L.Stenmark,“Oxygen plasma wafer bonding evaluated by the Weibull fracture probability method,” J. Micromech. Microen. , 11, pp364-380, 2001
[73] G. Wallis, D. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. , 40 , pp.3946–3949, 1969
[74] A. Cozma, B. Puers,“Characterization of the electrostatic bonding of silicon and Pyrex glass,” J. Micromech. Microeng, 5, pp.98–102, 1995
[75] K. Sooriakumar, David J. Monk, W. Chan, “Fabrication of media isolated absolute pressure sensor,” Electrochemical Societey Proceedings, 95, pp.231-237
[76] H. Krassow , F. Campabadal, E. L. Tamayo, “Wafer level packaging of silicon pressure sensors,” Sensors and Actuators A, 82, pp. 229-233, 2000
[77] S. D. Senturia and R. L. Smith,“ Microsensor packaging and system partitioning,” Sensors and Actuators A, 15, pp. 221-234. 1988
[78] Y.T. Cheng, W.T. Hsu, K. Najafi, C. T. C. Nguyen, and L. Lin, “Vacuum Packaging Technology Using Localized Aluminum/Silicon-to-Glass Bonding,” J. of MEMS, pp. 556-565, 11, 2002
[79] Y. T. Cheng, L. Lin, and K. Najafi, “Localized bonding with PSG or indium solder as intermediate layer,” IEEE MicroElectro Mechanical Systems Conference, pp.285–289, 1999
[80] T. C. C. Nguyen, L. Lin, “Vacuum Packaging Technology Using Localized Aluminum / Silicon to Glass Bonding,” J. of MEMS, 11, pp. 556-565, 2002
[81] U.M. Mescheder, M. Alavi, K. Hiltmann, Ch. Lietzau, Ch. Nachtigall, H. Sandmaier,“ Local laser bonding for low temperature budget”, Sensors and Actuators A. 98, p422-427, 2002
[82] H. A. Yang, M. C. Wu, and Weileun Fang, “Integration of the Fabrication Processes and Wafer Level Packaging of Optical MEMS Devices using Localized Induction Heating,” IEEE/LEOS Conference, Hawaii , pp. 22-23, 2003
[83] H. A. Yang, M. C. Wu, and W. Fang, “Localized induction heating solder bonding for wafer level MEMS packaging,” J. Micromech. Microeng., 15, pp. 394-399, 2005
[84] R. L. Little, Welding and welding technology, New York, McGraw-Hill, 1973
[85] K. F. Harsh and Y. C. Lee, “Modeling for Solder Self-Assembled MEMS, ” Proceedings of the International Society for Optical Engineering (SPIE `98) vol. 3289 - Micro-Optics Integration and Assemblies, San Jose, CA, pp. 177-184, 1998
[86] J. W. Judy, R. S. Muller, “Magnetic microactaution of torsional polysilicon structures,” International Conference on Solid-State Sensors and Actuators Transducers 95, 1, pp332-335, 1995
[87] C. Liu, T. Tsao, Y. C. Tai, J. Leu, et. Al, “Out-of plane permalloy magnetic actuators for delta-wing control,” Proceedings MEMS 95, pp328-331, 1995
[88] J. A. Osborn, “Demagnetizing factors of general ellipsoid,” phys. Rev., 67, pp. 351-357, 1945
[89] Aharoni, “Demagnetizing factors for rectangular ferromagnetic prisms,” J. Appl. Phys., 83, pp.3432, 1998
[90] K. E. Petersen, “Silicon torsional scanning mirror,” IBM J. Res. Dev., 24, pp. 631–637, 1980
[91] J. Hornbeck, “Digital Light Processinge for high-brightness, highresolution applications,” Electronic Imaging, San Jose, CA, pp. 27–40, 1997
[92] O. Solgaard, S.F.A. Sandejas, D.M. Bloom, “Deformable grating optical modulator,” Opt. Lett. , 17, pp 688–690, 1992
[93] D.T. Amm, R.W. Corrigan, “Grating light valve technology: update and novel applications,” Society for Information Displays Symposium, Anaheim, CA, pp. 29–32, 1998
[94] P.M. Hagelin, O. Solgaard,“Optical raster-scanning displays based on surface-micromachined polysilicon mirrors,” IEEE J. Sel. Top.Quantum Electron. , 5, pp67–74, 1999
[95] H. Webb, “Confocal scanning laser opthalmoscope,” Appl. Opt., 26, pp1492–1499, 1987
[96] Y. Hwang, J. Park, Y. Kim, J. Kim, “Large-scale full color laser projection display,” Proceedings of the 18th International Display Research Conference ASIA Display ’98, pp. 1167–1170, 1998
[97] K. Yamada, T. Kuriyama, “A novel asymmetric silicon micro-mirror for optical scanning display,” The 11th Annual International Workshop on Micro Electro Mechanical Systems, January 25–29, Heidelberg, Germany, pp. 110–115, 1998
[98] J. H. Lee, Y. C. Ko, B. S. Choi, J. M. Kim, and D. Y. Jeon, “Bonding of silicon scanning mirror having vertical comb fingers,” J. Micromech. Microeng., 12, pp. 644-649, 2002
[99] P. Hagelin, K. Cornett, O. Solgaard, “Micromachined mirrors in a raster scanning display system,” 1998 IEEE LEOS Summer Topical Meetings: Optical MEMS, 20–24 July, Monterey, CA, pp. 109–110, 1998
[100] R.A. Conant, P.M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K.Y. Lau, R.S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensors & Actuators A, 83, pp, 291-296, 2000
[101] L.O.S. Ferreira, S. Moehlecke, “A silicon micromechanical galvanometric scanner,” Sensors and Actuators A, 73, pp. 252–260, 1999
[102] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, and K. Matsumoto, “A Durable, Shock-Resistant Electromagnetic Optical Scanner With Polyimide-Based Hinges,” J. of MEMS, 10, pp. 418-423, 2001
[103] M. Sadiku, Elements of Electromagnetics, 2nd ed., Oxford, U.K.: Oxford University Press, 1994
[104] J. Tani, M. Minagawa, and K. Ohtomo, “Dynamic Behavior of Thin Plates Under Impulsive Magnetic Field,” IEEE Transactions on Magnetics, 26, pp. 544-547, 1990
[105] V. K. Varadan, X. Jiang and V. V. Varadan, Microstereplithography and other Fabrication Techniques for 3D MEMS, New York: J. Wiley, 2001.
[106] LT Romankiw, “A path: electroplating through lithographic masks in electronics to LIGA in MEMS,” Electrochimica Acta, 42, pp. 2985-3005, 1997