簡易檢索 / 詳目顯示

研究生: 楊學安
Hsueh-An Yang
論文名稱: 電磁感應渦電流於微機電系統之分析與應用
Analysis and Application of Electromagnetic
指導教授: 方維倫
Weileun Fang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 187
中文關鍵詞: 渦電流電磁感應微系統封裝微焊接技術勞倫茲力微電鑄技術
外文關鍵詞: Eddy current, Magnetic induction, MEMS package, Micro welding, Lorentz force, Electroform
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以外部全域性晶圓級磁場,在晶片局部區域上感應產生渦電流,作為研究主軸,並發展出相關應用。首先,本論文以理論及實驗方式,探討當元件縮小之後,渦電流對微結構幾何形狀變化之行為特性,此外也輔以材料的特性,使晶片在高功率交變磁場中,由渦電流造成局部感應加熱。其次,本論文針對微尺度下渦電流之特性,發展出三種應用:(1) 電磁感應局部加熱之微機電元件晶圓級封裝。以微電鍍鎳之區域感應形成渦電流,並快速產生高溫使焊料回焊達到晶圓級焊料接合;(2) 三維微結構之出平面定位及焊接。利用交變磁場抬升及定位微結構,同時在晶片上產生局部高溫焊接區,再以微焊接方式將出平面抬升結構焊接固定;(3) 無線圈式勞倫茲力掃描器。渦電流與外部永久磁鐵的搭配亦可產生出勞倫茲力,這個想法可達到以非接觸方式產生電場以及磁場,以渦電流代替致動區域電流佈線線圈,以此方式應用於以勞倫茲力驅動之微掃描面鏡,由於感應渦電流屬於面電流,會感應並分佈於電鍍鎳微鏡面上,這使得勞倫茲力分佈於整個鎳微鏡面上,而降低製程複雜性提高元件良率,並可以較小的功率驅動產生較大的位移。


    Eddy current is a promising induction heating and actuation approach for MEMS processes and devices. This study has discussed the scale effect of eddy current for mirco electroplating microstructures through the analytical and experimental means. The results show that the induction heating rising temperature varies with the in-plane surface area of microstructure and the relative permeability of thin-film materials. Moreover, the shape of microstructure also leads to the different of rising temperature. Thus, localized heating is achieved on substrate by applying an external high frequency magnetic field. It is also easy to tune the heating temperature by varying the area of magnetic film; in other words, the photolithography can define various temperature regions on substrate.
    Three applications are presented in this study: (1) Localized heating for wafer level packaging. The electroplated thick film acts as a heater and a spacer. It takes only several seconds to complete the solder reflow and bonding process, and hermetic seal of the packaged device is achieved. The bonding strength is up to 18 MPa. The integration the MUMPs devices with this packaging technique have been demonstrated; (2) Localized positioning and welding for 3D microstructures. The lifting and welding can be localized by the magnetic film. Moreover, a global wafer level process can be achieved by the magnetic field; (3) Coil-less Lorentz force for optical scanner. The eddy current is induced in ferromagnetic material by solenoid, thus, the complicated coil routing and insulation layer deposition for current is prevented. This study demonstrated a 2D scanning mirror with 20 mechanical scan angles when operated at 100mV and 0.016mA.

    目錄 中文摘要 I Abstract II 圖目錄 VIII 表目錄 XIV 第1章 序論 1 1-1 研究動機 1 1-2 研究背景 2 1-3 研究目標 6 1-4 全文架構 8 第2章 電磁感應及磁場加熱理論及分析 14 2-1 靜磁場 14 2-2 磁場中的磁性材料 15 2-3 電磁感應 18 2-4 歐姆定律、焦耳定律與電功率 20 2-5 磁場中的磁損失 21 2-6 渦電流損失與集膚效應 23 第3章 微尺度下材料之電磁感應加熱 32 3-1 前言 32 3-2 電磁感應加熱之各參數分析 33 3-2.1 磁場頻率及磁場影響範圍 34 3-2.2 電磁感應局部加熱行為 35 3-2.3 面積與感應溫度的關係 35 3-2.4 厚度與感應溫度的關係 36 3-2.5 微結構邊長與感應溫度的關係 37 3-3 磁通密度與感應溫度的關係 38 3-4 改善微尺度感應加熱效率 39 3-5 結果與討論 40 第4章 電磁感應局部加熱於微機電系統封裝 59 4-1 前言 59 4-2 感應加熱晶片接合技術 63 4-2.1 矽與矽或玻璃之局部電磁感應加熱接合 64 4-2.2 局部感應加熱接合強度測試 65 4-3 感應加熱封裝技術與元件製程整合及測試 66 4-3.1 封裝過程之溫度分佈測試 66 4-3.2 洩漏測試 67 4-3.3 元件性能測試 68 4-4 結果與討論 68 第5章 電磁感應微電鑄結構之三維定位及焊接 86 5-1 前言 86 5-2 磁場出平面致動理論分析 87 5-3 元件設計及製造 89 5-3.1 扭轉彈簧形式 90 5-3.2 微鉸鏈形式 90 5-4 元件定位及焊接固定 91 5-4.1 扭轉彈簧形式的立體定位及焊接 92 5-4.2 微鉸鏈形式的立體定位及焊接 93 5-5 結果與討論 94 第6章 以渦電流產生勞倫茲力驅動微掃描面鏡 108 6-1 前言 108 6-2 以渦電流產生勞倫茲力 110 6-2.1 理論分析 110 6-2.2 結構動態分析 113 6-3 製程設計及實驗量測 117 6-3.1 動態量測實驗 118 6-3.2 掃描圖形分析 118 6-3.3 轉角變化與掃描圖形分析 119 6-3.4 鏡面溫度分佈量測 121 6-4 結果與討論 121 第7章 總結及未來工作 142 參考文獻 144 附錄A電磁學符號及電鍍參數 152 附錄B電鍍製程介紹 154 附錄C以微電鍍製程製作微鉸鏈 171 附錄D電鍍鎳之機械性質 178 論文著作 183 圖目錄 圖1-1 高週波電磁感應加熱工件狀 10 圖1-2多晶矽微加熱器產生局部加熱於微系統封裝 10 圖1-3電磁感應產生局部加熱於微系統封裝 11 圖1-4外部磁力驅動產生三維組裝 11 圖1-5利用表面張力產生三維組裝 11 圖1-6利用薄膜殘餘應力產生三維自組裝 12 圖1-7利用微致動器產生三維結構 12 圖1-8利用微鉸鏈技術所做的機構連結 12 圖1-9勞倫茲力驅動微掃描面鏡 13 圖1-10 電流佈線產生雙軸勞倫茲力驅動微掃描面鏡 13 圖 2-1電流 在場點P產生一個磁場微分元 27 圖 2-2材料受外部磁場H磁化與其磁通量B的關係曲線 28 圖 2-3鐵磁性材料的B(或M)-H函數曲線圖 28 圖 2-4穿過平面的磁通量 29 圖 2-5鐵芯進入磁場中而增加的磁通量 29 圖 2-6導線的形狀 30 圖 2-7三種磁損失隨頻率變化的強度分佈 30 圖 2-8一圓板受磁場感應狀 31 圖 2-9鎳受交變磁場感應之後的集膚效應 31 圖 3-1工件受磁場感應加熱狀 42 圖 3-2感應加熱效率受尺寸效應的影響 43 圖 3-3磁場頻率及材料導電率對材料所產生之電功率分析 44 圖 3-4 螺旋型線圈磁場頻率量測及輸出功率與磁場頻率的關係 45 圖 3-5 螺旋型線圈之磁場強度 46 圖 3-6輸出功率百分比與磁場強度分佈 47 圖 3-7螺旋型線圈磁場強度與感應溫度對垂直距離之關係 47 圖 3-8 以VSM量測之磁滯曲線 48 圖 3-9電鍍鎳經磁場感應產生局部加熱狀 49 圖 3-10 量測不同電鍍鎳面積的實驗架設 49 圖 3-11調變電鍍鎳面積或磁場功率與加熱溫度之關係 50 圖 3-12四種不同電鍍試片之厚度量測 51 圖 3-13四種不同厚度電鍍試片之升溫曲線及感應溫度 52 圖 3-14不同厚度及形狀造成感應溫度之差異 53 圖 3-15等效渦電流示意圖 54 圖 3-16三種形狀的感應加熱溫度分佈圖 54 圖 3-17磁通密度改變後微結構面積與加熱溫度之關係 55 圖 3-18相同面積但不同個數與加熱溫度之關係 55 圖 3-19調變微結構距離與加熱溫度之關係 56 圖 3-20突然增加磁通密度所產生的溫度變化 57 圖 3-21加入螺帽與未加入前之感應加熱溫度上升曲線 58 圖4-1微機電壓力計封裝 [51] 69 圖4-2微機電麥克風封裝 [52] 70 圖4-3微機電技術DLP投影晶片封裝 [53] 70 圖4-4利用晶圓接合技術達到微系統封裝 70 圖4-5不同材料對於氣密封裝的影響程度 71 圖4-7利用多晶矽微加熱器產生局部加熱 72 圖4-8以雷射產生局部加熱於鋁與玻璃接合 72 圖4-9以電磁感應方式產生局部陽極接合 73 圖4-10電磁感應局部加熱於微機電封裝 74 圖4-11矽與矽電磁感應局部加熱晶圓接合製程之流程 74 圖4-12矽與矽電磁感應局部加熱晶圓接合 75 圖4-13矽與玻璃電磁感應局部加熱晶圓接合 75 圖4-14電磁感應局部加熱晶圓接合強度測試 76 圖4-15矽與矽晶片接合之拉伸試驗結果 77 圖4-16矽與玻璃晶片接合之拉伸試驗結果 78 圖4-18整合於面型微加工之電子顯微照 80 圖4-19電磁感應局部加熱封裝前後照 81 圖4-20局部加熱溫度分佈圖 81 圖4-21局部加熱溫度升溫圖 82 圖4-22以電鍍製程方式跨越導線 83 圖4-23液體洩漏試驗 83 圖4-24接合未完全時的洩漏狀況 84 圖4-25氣體洩漏測試 84 圖4-26封裝後電性測試 85 圖4-27封裝後機械性能動態測試 85 圖4-28封裝完成圖 85 圖5-1二維結構以探針挑起成三維結構 95 圖5-2以錫球回焊時之表面張力組裝成三維結構 95 圖5-3以撓性彈簧定位磁致動後形成三維結構 95 圖5-4以微鉸鏈及微卡榫機構定位磁致動後形成三維結構 96 圖5-5以交變磁場同時致動及組裝微結構 96 圖5-6磁致動微結構的受力模型 97 圖5-7橢圓體去磁化率的座標系統 97 圖5-8去磁率Na與其他兩軸的比例關係 98 圖5-9去磁率Nb與其他兩軸的比例關係 98 圖5-10去磁率Nc與其他兩軸的比例關係 98 圖5-11交變磁場立體致動及焊接微結構的製程流程 99 圖5-12兩種形式微結構之立體致動及微焊接 99 圖5-13以扭轉彈簧支撐的微結構之設計尺寸 100 圖5-14扭轉軸形式微結構製造完之顯微照片 100 圖5-15微鉸鏈支撐的微結構之設計尺寸 101 圖5-16溢出光阻模的焊料與微面鏡之疊合 101 圖5-17以微鉸鏈方式組裝之製造結果 102 圖5-18以交變磁場致動微鉸鏈支撐之微結構 102 圖5-19交變磁場致動及焊接實驗架設 103 圖5-20交變磁場致動扭轉軸形式微結構時的致動量測 103 圖5-21交變磁場三維定位及焊接扭轉式微結構之定性觀察 104 圖5-22感應加熱扭轉式微結構之升溫量測 104 圖5-23扭轉軸形式結構之電子顯微照片 105 圖5-24不同抬升角度對微鉸鏈形式之結構所產生之轉矩 105 圖5-25以VSM量測電鍍鎳微結構之磁滯曲線 106 圖5-26未加助焊劑之前的微焊接狀 106 圖5-27加助焊劑之後的微焊接狀 107 圖5-28微鉸鏈支撐微結構之連續感應溫度 107 圖6-1 德州儀器DMD晶片 122 圖6-2 SONY GLV晶片 122 圖6-3 體型微加工技術所製造的微掃描面鏡 122 圖6-4 面型微加工技術所製造的微掃描面鏡 123 圖6-5 以勞倫茲力驅動的微掃描面鏡 123 圖6-6 Olympus所設計之勞倫茲力驅動的微掃描面鏡 123 圖6-7 Olympus勞倫茲力驅動的微掃描面鏡之完成圖 124 圖6-8 以絕緣層及導電層搭配達到電流佈線 124 圖6-9 以渦電流產生勞倫茲力驅動微掃描面鏡 125 圖6-10渦電流在掃描面鏡上的分佈 125 圖6-11勞倫茲力在掃描面鏡上的分佈 126 圖6-12單軸掃描面鏡力矩與磁場的關係 127 圖6-13單軸掃描面鏡的尺寸設計 127 圖6-14單軸掃描面鏡的第一及第二模態 127 圖6-15雙軸掃描面鏡力矩與磁場的關係 128 圖6-16雙軸掃描面鏡的尺寸設計 129 圖6-17雙軸掃描面鏡的第一及第二模態 129 圖6-18電鍍微掃描面鏡的製程流程 130 圖6-19單軸電鍍微掃描面鏡的製程結果 130 圖6-20雙軸電鍍微掃描面鏡的製程結果 131 圖6-21組裝後的電鍍微掃描面鏡 131 圖6-22面鏡受磁場磁化後的位移量測 132 圖6-23微掃描面鏡實驗架設圖 133 圖6-24微掃描面鏡動態量測-轉軸部分 133 圖6-25雙軸微掃描面鏡的動態量測-外框架部分 134 圖6-26雙軸微掃描面鏡之掃描圖案 135 圖6-27雷射光掃描路徑 135 圖6-28 Chebyshev多項式之掃描圖形 136 圖6-29 Lissajous之掃描圖形 136 圖6-30 角位移比之關係曲線 137 圖6-31 角位移比量測之實驗架設 137 圖6-32單軸掃描面鏡轉動角度與其掃描圖之關係 138 圖6-33雙軸掃描面鏡轉動角度與其掃描圖之關係 139 圖6-34雙軸掃描面鏡轉動角度與其掃描圖之關係 140 圖6-35單軸及雙軸微掃描面鏡之溫度分佈圖 141 圖B-1 電鍍鎳之電鍍機制 159 圖B-2 電流密度對鍍層厚度的影響 160 圖B-3 結構形狀造成電流密度分佈不均 160 圖B-4 未修正電流密度前的感應溫度結果 161 圖B-5 未修正電流密度前三角形的沉積結果 161 圖B-6 未修正電流密度前正方形的沉積結果 162 圖B-7 未修正電流密度前圓形的沉積結果 162 圖B-8 電鍍結構內部及角落處的高度比較 163 圖B-9 電鍍微結構之角度測試 163 圖B-10 角度20° 之三角形電鍍形貌及感應溫度 164 圖B-11 角度22° 之三角形電鍍形貌及感應溫度 164 圖B-12 角度24° 之三角形電鍍形貌及感應溫度 165 圖B-13 角度28° 之三角形電鍍形貌及感應溫度 165 圖B-14 角度31° 之三角形電鍍形貌及感應溫度 166 圖B-15角度不同之微結構感應升溫曲線 166 圖B-16不同角度之電鍍厚度及感應溫度比較 167 圖B-17電鍍沉積率較快時所產生的影響 167 圖B-18虛擬電鍍區域造成不同的電流密度分佈 167 圖B-19改變電流密度晶片中心到邊緣的電鍍厚度分佈 168 圖B-20有虛擬電鍍區域時結構應力改善狀 169 圖B-21改善電流密度分佈前後微結構之表面粗操度 169 圖B-22修正後三角形的電鍍結果 170 圖B-23修正後正方形的電鍍結果 170 圖B-24修正後圓形的電鍍結果 170 圖C-1以微電鍍製作微鉸鏈 173 圖C-2以微電鍍製程製作微鉸鏈及鎳金屬面鏡 173 圖C-3微鉸鏈及鎳金屬微面鏡 173 圖C-4電鍍鎳金屬微鏡面之光學品質 174 圖C-5液體下驅動微鏡面輔助結構釋放 174 圖C-6微電鍍技術製作之微鉸鏈 175 圖C-7微鉸鏈連結金屬微鏡面陣列 175 圖C-8磁致動實驗架設圖 176 圖C-9磁致動鎳金屬鏡面之連續畫面 176 圖C-10卡在香菇狀結構的微鏡面 177 圖C-11微鏡面掃描之實驗架設 177 圖C-12 磁致動微鏡面之ㄧ維掃描結果 177 圖C-1量測電鍍4.3μm鎳厚膜之楊氏模數 178 圖C-2量測電鍍28μm鎳厚膜之楊氏模數 178 圖C-3量測電鍍37μm鎳厚膜之楊氏模數 179 圖C-4量測電鍍50μm鎳厚膜之楊氏模數 179 圖C-5量測電鍍4.3μm鎳厚膜之硬度 180 圖C-6量測電鍍28μm鎳厚膜之硬度 180 圖C-7量測電鍍37μm鎳厚膜之硬度 181 圖C-8量測電鍍50μm鎳厚膜之硬度 181 圖C-9不同鎳厚膜厚度之楊氏模數比較 182 圖C-10不同鎳厚膜厚度之硬度比較 182 表目錄 表2-1 磁性材料分類 26 表2-2 順磁性與逆磁性材料之變化率 26 表2-3 順磁性與強磁性材料之相對導磁率 27 表3-1 波長的分類及應用 41 表3-2 三種幾何形狀邊長、電阻與渦電流關係 41 表4-1各種晶圓接合方式 69 表A-1常用電磁學符號及單位 152 表A-2電鍍鎳鈷的鍍液參數 153 表A-3電鍍錫鉛合金的鍍液參數 153 表B-1電鍍材料的材料性質 159

    [1] J. W. Judy, “Batch-Fabricated Terromagnetic Microactuators with Silicon Flexures”, Ph.D thesis, 1996
    [2] http://www.inductionatmospheres.com
    [3] W. H. Ko, J. T. Suminto, and G. J. Yeh, Bonding techniques for microsensors, Micromachining and Micropackaging of Transducers, New York, NY: Elsevier, 1985
    [4] K. E. Peterson and P. Barth, “Silicon fusion bonding for pressure sensors,” Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 144–147, 1988
    [5] G. H. He, L. Lin, and Y. T. Cheng, “Localized CVD bonding for MEMS packaging,” International Conference on Solid-State Sensors and Actuators Transducers ’99, Sendai, Japan, 1999
    [6] Y. T. Cheng, W. T. Hsu, L. Lin, C. T. Nguyen, and K. Najafi, “Vacuum packaging technology using localized aluminum/silicon-to-glass bonding,” IEEE International Conference on Microelectromechanical Systems (MEMS), Interlaken, Switzerland, 2001
    [7] L. Lin, “MEMS post-packaging by localized heatine and bonding,” IEEE Trans. Adv. Packag., 23, pp. 608–616, 2000
    [8] N. K. Budraa, H. W. Jackson, M. Barmatz, W. T. Pike, and J. D. Mai, “Low pressure and low temperature hermetic wafer bonding using microwave heating,” IEEE International Conference on Microelectromechanical Systems, Orlando, FL, pp. 490–492, 1999
    [9] K. F. Lei, W. J. Li, N. Budraa, and J. D. Mai, “Microwave bonding of polymer-based substrates for micro/nano fluidic applications,” International Conference on Solid-State Sensors and Actuators Transducers ’03, Boston, MA, pp. 1335–1338, 2003
    [10] A. Cao, M. Chiao and Liwei Lin, “Selective and Localized Wafer Bonding Using Induction Heating,” Technical Digest of Solid-State Sensors and Actuators Workshop, pp. 153-156, Hilton Head Island, June 2002
    [11] A. Cao and Liwei Lin, “Selective Induction Heating for MEMS Packaging and Fabricatoin,” ASME International Mechanical Engineering Congress and Exposition, Proceedings of the MEMS Symposia, 2, New York, NY, 2001
    [12] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, “Three-dimensional micro-Fresnel optical elements fabricated by micromachining technique,” Electronics Letters, 30, pp. 448-449, 1994
    [13] T. Ebefors, E. Kälvesten, and G. Stemme, “Three dimensional silicon triple-hot wire anemometer based on polyimide joints,” Proceeding of the IEEE MEMS’98 Workshop, Heidelberg, Germany, January, pp. 93-98, 1998
    [14] L. Fan, R. T. Chen, A. Nespola, and M. C. Wu,” Universal MEMS platforms for passive RF components: suspended inductors and variable capacitors,” IEEE MEMS’98 Workshop, Heidelberg, Germany, January, pp.29-33, 1998
    [15] C. Liu, T. Tsao, and Y. Tai,“ Out-of-plane permalloy magnetic actuators for delta-wing control,” IEEE Micro Electromechanical Sys. Workshop, pp. 7-12, 1995
    [16] J. Judy and R. S. Muller,“Magnetic actuated, addressable microstructures,” J. of Microelectromech. Syst., 6, pp. 249-56, 1997
    [17] Y. Yi and C. Liu,“Magnetic Actuation of Hinged Microstructures,” Journal of MEMS, 8, pp.10-17, 1999
    [18] E. Iwase, S. Takeuchi, and I. Shimoyama, “Sequential Batch Assembly of 3-D Microstructures with Elastic Hinges by a Magnetic Field,” in Proc. IEEE MEMS Conf., pp. 188-191, 2002
    [19] V. Kaajakari, and A. Lal, “Pulsed ultrasonic release and assembly of micromachines,” The 10th International Conference on Solid-State Sensors and Actuators Transducers'99, Sendai, Japan, pp. 212-215, 1999
    [20] V. Kaajakari and A. Lal, “Thermo-kinetic actuation for hinged structure batch microassembly,” Proceeding of the IEEE MEMS’02 Workshop, Las Vegas, NV, January, pp. 196-199, 2002
    [21] T. A. McMahon and J. T. Bonner, On Size and Life, New York, NY: Scientific American Books, 1983
    [22] A. Singh, D. A. Horsley, M. B. Cohn, A. P. Pisano, and R. T. Howe, “Batch transfer of microstructures using flip-chip solder bump bonding,” The 9th International Conference on Solid-State Sensors and Actuators Transducers'97, Chicago, IL, June, pp. 265-268, 1997
    [23] R. R. A. Syms, and E. M. Yeatman, “Self-assembly of three-dimensional microstructures using rotation by surface tension forces,” Electronics Letters, 29, pp. 662-664, 1993
    [24] P. W. Green, R. R. A. Syms, and E. M. Yeatman, “Demonstration of three-dimensional microstructure self-assembly,” Journal of Microelectromechanical Systems, 4, pp. 170-176, 1995
    [25] R.R.A. Syms, C. Gormley, and S. Blackstone, “Improving yield, accuracy and complexity in surface tension self-assembled MOEMS,” Sensors and Actuators A, 2839, pp. 1-11, 2000
    [26] R. R. A. Syms, “Self-assembled 3-D silicon microscanners with self-assembled electrostatic drives,” IEEE Photonics Technology Letters, 12, pp. 1519-1521, 2000
    [27] G.W. Dahlman and E. M.Yeatman, “HighQmicrowave inductors on silicon by surface tension self-assembly,” Inst. Elect. Eng. Electron. Lett., 36, pp. 1707–1708, 2000
    [28] M. W. Judy, Y. H. Cho, R. T. Howe, A. P. Pisano, “Self-adjusting microstructures (SAMS),” Proceeding of the IEEE MEMS’91 Workshop, Nara, Japan, February, pp. 51-56, 1991
    [29] V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles, and D. J. Bishop, “Lucent MicrostarTM Micromirror Array Technology for Large Optical Crossconnects,” Proceedings of SPIE, Santa Clara, CA, September, pp. 320-324, 2000
    [30] Y. P. Ho, M. Wu, H. Y. Lin, and W. Fang, “A Robust and Reliable Stress-induced Self-assembly Supporting Mechanism for Optical Devices,” Microsystem Technologies, 11, pp. 214–220, 2004
    [31] Sandia National Lab Process, http://www.sandia.gov/
    [32] T. Akiyama, D. Collard, and H. Fujita, “Scratch drive actuator with mechanical links for self-assembly of three-dimensional MEMS,” Journal of Microelectromechanical Systems, 6, pp. 10-17, 1997
    [33] E. Quévy, L. Buchaillot, and Dominique Collard, “3-D self-assembling and actuation of electrostatic microstructures,” IEEE Transactions on electron devices, 48, pp. 1833-1839, 2001
    [34] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing, “Microfabricated hinges,” Sensors and Actuators A, 33, pp. 249-256, 1992
    [35] N. Asada, H. Matsuki, K. Minami and M. Essashi, “Silicon micromachined two dimensional alvano optical scanner, ” IEEE Trans. Magn. , 30, pp 4647–4649, 1994
    [36] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, K. Matsumoto “An Electromagnetic Optical Scanner With Polyamide-Based Hinges” Proc. IEEE Transducers’99, Sendai, Japan, 1999
    [37] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, and K. Matsumoto, “A durable, shock-resistance electromagnetic optical scanner with polyimide-based hinges”, J. Microelectromech. Syst., 10, pp. 418-423, 2001
    [38] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, and K. Matsumoto, “A mems electromagnetic optical scanner for a commercial confocal laser scanning microscope”, J. Microelectromech. Syst. 12, pp 243–251, 2003
    [39] S. H. Ahn and Y. K. Kim, "Silicon scanning mirror of two DOF with compensation current routing", J. Micromechanics and Microengineering, 14, pp.1455-1461, 2004
    [40] H. Benson, University Physics, John Wiley&Sons, Inc, 1996
    [41] A. G. Guy, Introduction to Materials Science, New York, NY: McGraw Hill, 1972
    [42] A. G. Guy, Essentials of materials science, New York, NY: McGraw Hill, 1976
    [43] T. J. Fiske, H. Gokturk, and D. M. Kalyon, “Enhancement of the Relative Magnetic Permeability of Polymer Composites with Hybrid Particulate Fillers”, Journal of Applied Polymer Science, 65, pp. 1371-1377, 1997
    [44] S. N. Talukdar and J. R. Bailey, “Hysteresis Models for System Studies,” IEEE Transaction on Power Apparatus and System, 95, pp. 1429-1434, 1976
    [45] T. Loga, F. S. Chute, and F. E. Vermeulen, “ Simple Finite Element Solutions for Eddy Current Losses in Pipe-Type Cables”, Applied Comptuational Electromagnetic Society, 10, pp. 102-109, 1995
    [46] K.Zakrzewski and F. Pietras, “ Method of Calculating the Electromagnetic Field and Power Losses in Ferromagnetic Materials, Taking Into Account Magnetic Hysteresiss,” Proc. IEE, 118, 1971
    [47] S. N. Talukdar and J. R. Bailey, “Hysteresis Models for System Studies,” IEEE Transactions on Power Apparatus and System, 95, pp. 1429-1434, 1976
    [48] Cullity, Introduction to Magnetic Materials, Addison-Wesley, Mass., 1972
    [49] J. O. S. Pizarro and O. V. Trevisan, “Electrical Heating of Oil Reservoir Numerical Simulation and Field test Result,” Journal of Petroleum Technology, pp. 1320-1326, 1990
    [50] H. Johnson and M. Graham, High-Speed Signal Propagation, 2003
    [51] http://www.motorola.com/
    [52] http://www.knowles.com/
    [53] http://www.DLP.com/
    [54] http://www.analog.com/
    [55] W. T. Hsu, J. R. Clark, and C. T. C. Nguyen, “Mechanically temperature compensated flexural-mode micromechanical resonators,” Proc. International Electron Devices Meeting, San Francisco, CA, pp. 399–402, 2000
    [56] K. Wang, Y. Yu, A. C. Wong, and C. T. C. Nguyen, “VHF free-free beam high-Q micromechanical resonators,” IEEE MEMS’99, Orlando, FL, pp. 453–458 , 1999
    [57] F. Ayazi and K. Najafi,“ A HARPSS polysilicon vibrating ring gyroscope,” J. MEMS, 10, pp. 169–179, 2001
    [58] M. Abe, E. Shinohara, K. Hasegawa, S. Murata, and M. Esashi, “Trident-type tuning fork silicon gyroscope by the phase difference detection,” IEEE MEMS’00, Miyazaki, Japan, pp. 508-513, 2000
    [59] D. Stroehle, “On the penetration of water vapor into packages with cavities and on maximum allowable leak rates,” 15th Annual Proceedings, Reliability Physics Symposium, pp. 101-106, 1977
    [60] T.Giorgi, “Getters and gettering,” Jap. J. Appl. Phys., 2, pp.53, 1974
    [61] A. Roth, “Vacuum Technology,” Third Edition, 1989
    [62] H. Henmi, S. Shoj, K. Yoshimi and M. Esashi, “Vacuum packaging for microsensors by glass-silicon anodic bonding,” Sensors and Actuators A, 43, pp. 243-248, 1994
    [63] M. R. Houston, R. T. Howe, and R. Maboudian, “Effect of hydrogen termination on the work of adhesion between rough polycrystalline silicon surfaces,” J. Appl. Physics., 81, pp. 3474-3483, 1997
    [64] U. Srinivasan, M. R. Houston, R. T. Howe, “Alkyltrichlorosilane-Based Self Assembled Monolayer Films for stiction reduction in silicon micromachines,” J. of MEMS., 7, pp. 252-260, 1998
    [65] D. M. Burn, and V. M. Bright, “Optical power induced damage to microelectromechanical mirrors,” Sensors and Actuators A, 70, pp6-14, 1988
    [66] M. K. Lee, W. D. Cowan, B. M. Welsh, V. M. Bright, and M. C. Roggemann, “Aberration- correction results from a segmented microelectromechanical deformable mirror and a refractive lenslet array,” Optics Letters, 23, pp. 645-647, 1998
    [67] W. Ko, J. Sumito, G. Yeh, Micromachining and Micropackaging of Transducers, Elsevier, Amsterdam, pp. 41–61, 1985
    [68] Q. Y. Tong, U. Gosele, Semiconductor Wafer Bonding, Wiley, New York, 1999
    [69] P. W. Barth, “Silicon fusion bonding for fabrication of sensors, actuators and microstructures,” Sensors and Actuators A, 23, pp. 919-926, 1990
    [70] J. M. Noworolski, E. Klaassen, J. Logan, K Petersen, and N. I. Maluf, “Fabrication of SOI wafers with buried cavities using silicon fusion bonding and electrochemical etch back,” Sensors and Actuators A, 54, pp. 709-713, 1996
    [71] W. P. Maszara, G. Goetz, A. Caviglia, J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator,” J. Appl. Phys., 16, pp. 4943-4950, 1998
    [72] K.Jonsson, J.Köhler, C.Hedlund, and L.Stenmark,“Oxygen plasma wafer bonding evaluated by the Weibull fracture probability method,” J. Micromech. Microen. , 11, pp364-380, 2001
    [73] G. Wallis, D. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. , 40 , pp.3946–3949, 1969
    [74] A. Cozma, B. Puers,“Characterization of the electrostatic bonding of silicon and Pyrex glass,” J. Micromech. Microeng, 5, pp.98–102, 1995
    [75] K. Sooriakumar, David J. Monk, W. Chan, “Fabrication of media isolated absolute pressure sensor,” Electrochemical Societey Proceedings, 95, pp.231-237
    [76] H. Krassow , F. Campabadal, E. L. Tamayo, “Wafer level packaging of silicon pressure sensors,” Sensors and Actuators A, 82, pp. 229-233, 2000
    [77] S. D. Senturia and R. L. Smith,“ Microsensor packaging and system partitioning,” Sensors and Actuators A, 15, pp. 221-234. 1988
    [78] Y.T. Cheng, W.T. Hsu, K. Najafi, C. T. C. Nguyen, and L. Lin, “Vacuum Packaging Technology Using Localized Aluminum/Silicon-to-Glass Bonding,” J. of MEMS, pp. 556-565, 11, 2002
    [79] Y. T. Cheng, L. Lin, and K. Najafi, “Localized bonding with PSG or indium solder as intermediate layer,” IEEE MicroElectro Mechanical Systems Conference, pp.285–289, 1999
    [80] T. C. C. Nguyen, L. Lin, “Vacuum Packaging Technology Using Localized Aluminum / Silicon to Glass Bonding,” J. of MEMS, 11, pp. 556-565, 2002
    [81] U.M. Mescheder, M. Alavi, K. Hiltmann, Ch. Lietzau, Ch. Nachtigall, H. Sandmaier,“ Local laser bonding for low temperature budget”, Sensors and Actuators A. 98, p422-427, 2002
    [82] H. A. Yang, M. C. Wu, and Weileun Fang, “Integration of the Fabrication Processes and Wafer Level Packaging of Optical MEMS Devices using Localized Induction Heating,” IEEE/LEOS Conference, Hawaii , pp. 22-23, 2003
    [83] H. A. Yang, M. C. Wu, and W. Fang, “Localized induction heating solder bonding for wafer level MEMS packaging,” J. Micromech. Microeng., 15, pp. 394-399, 2005
    [84] R. L. Little, Welding and welding technology, New York, McGraw-Hill, 1973
    [85] K. F. Harsh and Y. C. Lee, “Modeling for Solder Self-Assembled MEMS, ” Proceedings of the International Society for Optical Engineering (SPIE `98) vol. 3289 - Micro-Optics Integration and Assemblies, San Jose, CA, pp. 177-184, 1998
    [86] J. W. Judy, R. S. Muller, “Magnetic microactaution of torsional polysilicon structures,” International Conference on Solid-State Sensors and Actuators Transducers 95, 1, pp332-335, 1995
    [87] C. Liu, T. Tsao, Y. C. Tai, J. Leu, et. Al, “Out-of plane permalloy magnetic actuators for delta-wing control,” Proceedings MEMS 95, pp328-331, 1995
    [88] J. A. Osborn, “Demagnetizing factors of general ellipsoid,” phys. Rev., 67, pp. 351-357, 1945
    [89] Aharoni, “Demagnetizing factors for rectangular ferromagnetic prisms,” J. Appl. Phys., 83, pp.3432, 1998
    [90] K. E. Petersen, “Silicon torsional scanning mirror,” IBM J. Res. Dev., 24, pp. 631–637, 1980
    [91] J. Hornbeck, “Digital Light Processinge for high-brightness, highresolution applications,” Electronic Imaging, San Jose, CA, pp. 27–40, 1997
    [92] O. Solgaard, S.F.A. Sandejas, D.M. Bloom, “Deformable grating optical modulator,” Opt. Lett. , 17, pp 688–690, 1992
    [93] D.T. Amm, R.W. Corrigan, “Grating light valve technology: update and novel applications,” Society for Information Displays Symposium, Anaheim, CA, pp. 29–32, 1998
    [94] P.M. Hagelin, O. Solgaard,“Optical raster-scanning displays based on surface-micromachined polysilicon mirrors,” IEEE J. Sel. Top.Quantum Electron. , 5, pp67–74, 1999
    [95] H. Webb, “Confocal scanning laser opthalmoscope,” Appl. Opt., 26, pp1492–1499, 1987
    [96] Y. Hwang, J. Park, Y. Kim, J. Kim, “Large-scale full color laser projection display,” Proceedings of the 18th International Display Research Conference ASIA Display ’98, pp. 1167–1170, 1998
    [97] K. Yamada, T. Kuriyama, “A novel asymmetric silicon micro-mirror for optical scanning display,” The 11th Annual International Workshop on Micro Electro Mechanical Systems, January 25–29, Heidelberg, Germany, pp. 110–115, 1998
    [98] J. H. Lee, Y. C. Ko, B. S. Choi, J. M. Kim, and D. Y. Jeon, “Bonding of silicon scanning mirror having vertical comb fingers,” J. Micromech. Microeng., 12, pp. 644-649, 2002
    [99] P. Hagelin, K. Cornett, O. Solgaard, “Micromachined mirrors in a raster scanning display system,” 1998 IEEE LEOS Summer Topical Meetings: Optical MEMS, 20–24 July, Monterey, CA, pp. 109–110, 1998
    [100] R.A. Conant, P.M. Hagelin, U. Krishnamoorthy, M. Hart, O. Solgaard, K.Y. Lau, R.S. Muller, “A raster-scanning full-motion video display using polysilicon micromachined mirrors,” Sensors & Actuators A, 83, pp, 291-296, 2000
    [101] L.O.S. Ferreira, S. Moehlecke, “A silicon micromechanical galvanometric scanner,” Sensors and Actuators A, 73, pp. 252–260, 1999
    [102] H. Miyajima, N. Asaoka, M. Arima, Y. Minamoto, K. Murakami, K. Tokuda, and K. Matsumoto, “A Durable, Shock-Resistant Electromagnetic Optical Scanner With Polyimide-Based Hinges,” J. of MEMS, 10, pp. 418-423, 2001
    [103] M. Sadiku, Elements of Electromagnetics, 2nd ed., Oxford, U.K.: Oxford University Press, 1994
    [104] J. Tani, M. Minagawa, and K. Ohtomo, “Dynamic Behavior of Thin Plates Under Impulsive Magnetic Field,” IEEE Transactions on Magnetics, 26, pp. 544-547, 1990
    [105] V. K. Varadan, X. Jiang and V. V. Varadan, Microstereplithography and other Fabrication Techniques for 3D MEMS, New York: J. Wiley, 2001.
    [106] LT Romankiw, “A path: electroplating through lithographic masks in electronics to LIGA in MEMS,” Electrochimica Acta, 42, pp. 2985-3005, 1997

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE