簡易檢索 / 詳目顯示

研究生: 柏拉塔
Taduri. Bhanu Pratap
論文名稱: 過渡金屬催化烯炔分子之環化反應
Transition Metal Catalyzed Cyclization of Ene-ynes
指導教授: 劉瑞雄
Rai-Shung Liu
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 1冊(338面)
中文關鍵詞: 金屬催化環化烯炔
外文關鍵詞: Metal Catalyzed, Cyclization, eneynes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由鉑、銠、金錯合物和氯化碘來居間催化 烯炔分子的分子內環化來合成螺旋的三烯酮類分子,而且發生在期間的重排反應再本論文中一起被探討。
    第一章節解釋利用氯化鉑(5mol%)催化而產生Bergman的環化在不同的烯二炔分子而進行Bergmann的環化反應而得到高產率稠環的環戊基萘分子。拉電子基與推電子基對於反應過程有深遠的影響,而且它可以簡單的闡述在利用不同的烯二炔分子下。其反應的機構被推測出經過 Pt-π-alkyne 的中間體。
    第二章致力於利用TpRuPPh3(CH3CN)2PF6(10mole%)來催化芳香族的烯二炔類分子經由高立體選擇性的分子內親核加成在π-alkyne的官能基上。這種環化適用於分子內與分子間兩種模式,然後簡單的去製備這類型芳香族的官能基包含O、N等異原子。經由這系列的實驗結果,,ㄧ個鑲入或是加成的反應機構被推導出來。
    第三章利用5mole%的AuClPEt3/H2O2 和 PtCl2/CO/H2O 的催化劑來氧化環化2-Ethenyl-1-(prop- 2’-yn-1’-ol)benzenes 得到萘衍生物的醛類或酮類化合物。
    。金的催化劑系統被發現優於鉑,因為主要產物醛或酮的產率較優從不同的醇類試劑中。末端炔類得到醛而雙取代炔類得到酮且皆有很高產率。經由三圓環的研究建立碳陰離子中間物在這類反應過程中。
    最後一章探討關於合成螺旋〔4,5〕的三烯酮 從4′-Methoxy-2-phenylethnyl-biphenyls 藉由氯化碘分子內Ipso- halocyclization引導和酸的居間重排。其Ipso- halocyclization關鍵在於甲氧基若是在四號位置,若是甲氧基不是在四號位置,則試劑無法形成螺旋狀化合物,而得到碘基菲,一個酸居間的反應機構被推導出來。碘基菲可被準備用於其他Pd(鈀)金屬催化劑的催化反應起始物例如 Heck reaction。


    Intramolecular cyclization of ene-ynes catalyzed by platinum, ruthenium and gold complexes, Synthesis of polyarenes via electrocyclization are dealt in this thesis.

    The thesis consists of four chapters
    The first chapter explains Bergman cyclization of a variety of enediynes by catalytic platinum chloride (5 mol%) to give a cyclopentyl fused naphthalene rings in high yields. The presence of electron withdrawing and donating groups has a dramatic influence on the course of the reaction and it is very well demonstrated using different enediynes. The reaction mechanism has been proposed to involve the platinum π- alkyne intermediate.
    The second chapter deals with aromatization of enediynes via highly regioselective intramolecular nucleophilic additions on π- alkyne functionality using TpRuPPh3(CH3CN)2PF6 (10 mol%). This cyclization works for both inter and intramolecular modes, thus allowing an easy access to prepare functionalized aromatic compounds containing O, N heteroatoms. An addition/insertion mechanism is proposed based on the results of a series of experiments.
    The third chapter presents the oxidative cyclization of 2-ethenyl-1-(prop-2′-yn-1′-ol)benzenes to naphthyl aldehydes and ketones via catalytic oxidative cyclization using 5 mol% of AuClPEt3/H2O2. Gold-catalyst has found to be effective for the production of the desired ketones and aldehydes from diverse alcohol substrates. Terminal alkynes gave the aldehydes, and the internal alkynes gave the ketones in high yields.
    The final chapter discusses about the synthesis of spiro[4.5]trienones from 4′-methoxy -2-phenylethnyl-biphenyls by intramolecular Ipso- halocyclization induced by ICl and their acid mediated rearrangement. The key in ipso-halocyclization is the presence of the methoxy group at 4′ position. In presence of methoxy group at a position other than 4′, substrates failed to give the spiro compound, instead they gave iodophenanthrenes. An acid mediated mechanism was proposed for rearrangement. Iodophenanthrenes prepared were used as starting materials for other palladium assisted catalytic reactions like Heck coupling reaction.

    Chapter I 1.1 Introduction 1 1.2 Enediyne natural products 1 1.3 Bergman Cyclization 3 1.3.1 Biradical studies 4 1.3.2 Photochemical studies 4 1.3.3 Metal induced cyclizations 5 1.3.3.1 Metal chelated 5 1.3.3.2 Metal mediated BC via vinylidine intermediate 6 1.3.3.3 Metal catalyzed BC 8 1.3.4 Anionic Bergman cyclizations 8 1.3.5 Factors influencing the Bergman Cyclization 9 1.4 Objective 10 1.5 Results and discussion 10 1.5.1 Preparation of starting materials 12 1.5.1.1 Preparation of 1-Ethynyl 2-pent 1-ynyl benzene 12 1.5.1.2 Preparation 2-ethynyl-4-methoxy-1-pent-1-ynyl- benzene 12 1.5.2 Generality of Platinum chloride 14 1.5.3 Mechanistic studies 19 1.6 Conclusions 21 1.7 Experimental Section 21 1.7.1 Synthesis of 1-ethynyl-2-pent-1-ynyl-benzene 22 1.7.2 Synthesis of 2-ethynyl-4-methoxy-1-pent-1-ynyl-benzene 23 1.7.3 Standard procedure for the Platinum-Catalyzed Cyclization via C-H bond insertion 24 1.8 Spectral Data 24 1.9 References 30 Chapter II 2.1 Introduction 34 2.2 Ruthenium catalyzed reactions 35 2.2.1 Reactions via vinylidine complex 35 2.3 Objective 39 2.4 Results and discussion 40 2.4.1 Properties of TpRuPPh3(CH3CN)2PF6 40 2.4.1.1 Preparation of the catalyst TpRuPPh3(CH3CN)PF6 40 2.4.2 Preparation of the substrate 4-(2-ethynyl-phenyl)- but-3-yn-1-ol 43 2.4.3 Preparation of the [4-(2-ethynyl-phenyl)-but-3-ynyl]-phenyl- amine 44 2.4.4 Electronic effects on the ruthenium catalyzed cyclization 46 2.5 Mechanistic studies 48 2.5.1 Preparation of the substrate (66) 49 2.5.2 Plausible reaction mechanism of nucleophilic cyclization of enediynes 51 2.6 Conclusions 52 2.7 Experimental Section 53 2.7.1 Synthesis of TpRuPPh3(CH3CN)2PF6 53 2.7.2 Preparation of 4-(2-ethynyl-phenyl)-but-3-yn-1-ol 54 2.7.3 Preparation of [4-(2-ethynyl-phenyl)-but-3-ynyl]- phenyl-amine 55 2.7.4 Preparation of 4-(2-ethynyl-4-methoxy-phenyl)- but-3-yn-1-ol 56 2.7.5 Preparation of 4-(2-Iodoethynyl-phenyl)-but-3-ynyl-1-ol 57 2.7.6 Standard Procedure for Ruthenium-Catalyzed Aromatization of Enediynes containing Alcohols 58 2.7.7 Standard Procedure for Ruthenium-Catalyzed Aromatization of Enediynes containing anilines 59 2.7.8 Standard Procedure for Ruthenium-Catalyzed Aromatization of Enediynes containing Iodoalkynes 59 2.8 Spectral data 59 2.9 References 67 Chapter III 3.1 Introduction 71 3.1.1 Structural features of Carbenes 71 3.2 Carbenes, Carbenoids and Metal carbenoids 72 3.2.1 Reactivity of carbene 73 3.2.2 Generation of Carbene complexes 73 3.2.3 Synthetic applications of Non-heteroatom-substituted Carbene Complexes 74 3.2.3.1 Cyclopropanation 74 3.2.3.2 Enyne cyclization 75 3.2.3.3 Oxidation 76 3.3 Objective 79 3.4 Results and Discussion 80 3.4.1 Preparation of substrate 76 82 3.4.2 Preparation of the substrate 98 86 3.5 Mechanistic studies 88 3.6 Conclusions 89 3.7 Experimental Section 89 3.7.1 Synthesis of 1-(2-isopropenyl-phenyl)-prop-2-yn-1-ol 90 3.7.2 Synthesis of 1-(2-isopropenyl-phenyl)-hept-2-yn-1-ol 91 3.7.3 Experimental procedure for Gold-catalyzed oxidative cyclization 91 3.8 Spectral data for compounds 92 3.9 References 97 Chapter IV 4.1 Introduction 100 4.1.1 Occurrence and Importance of PAHs 101 4.2 General Synthetic Methods 103 4.2.1 Synthesis of PAHs 103 4.2.1.1 Intramolecular cyclization 103 4.2.1.2 Metal catalyzed synthesis 104 4.2.2 Electrophilic cyclizations 106 4.3 Objective 110 4.4 Results and Discussion 111 4.4.1 Preparation of substrates 112 4.4.1.1 Preparation of Substrate 4′-Methoxy-2-p-tolylethynyl- biphenyl 112 4.4.2 Rearrangement of Spirotrienones 120 4.4.3 Synthetic Applications of Iodophenanthrenes 119 4.5 Mechanistic Studies 120 4.5.1 Mechanistic aspects of Electrocyclization 120 4.5.2 Acid Mediated Rearrangement to Iodophenanthrenes 120 4.6 Conclusions 122 4.7 Experimental Section 122 4.7.1 Synthesis of 4′-Methoxy-2-p-tolylethynyl-biphenyl 122 4.7.2 Standard Procedure for Electrocyclization of Ethynylbiphenyls using ICl Enediynes 124 4.7.3 Standard Procedure for Acid mediated rearrangement of Spirotrienones to Iodophenanthrenes 124 4.7.4 Standard Procedure for heck coupling reaction of iodophenanthrenes 125 4.8 Spectral data 125 4.9 References 130 Spectrums of compounds 1-142 136 List of Schemes VIII List of Tables XI List of Figures XII List of publications XIII Abbreviations XIV

    [1] (a) Dias, j. R. Handbook of Polycyclic Hydrocarbons, Part A, Elsevier. Amsterdam, 1987. (b) Bjorseth, A.; Ramdahl, T. Handbook of Polycyclic Aromatic Hydrocarbon. Vol. 2, eds. A. Marcel Dekker. New York, 1985. (c) Harvey, R. G. Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity, Cambridge University Press: Cambridge, 1991. (d) Baum, E. J. Polycyclic Hydrocarbons and Cancer. Vol. 1., Academic Press: New York, 1978.
    [2] (a) Grimmer, G. Environmental Carcinogens: Polycyclic Aromatics Hydrocarbons, CRC Press: Boca Raton, Fla 1983. (b) Blumer, M.; Sci 1976, 234, 35. (c) Badger, G. M. Progr. Phys. Org. Chem. 1965, 3, 1-40.
    [3] (a) Grimmer, G.; Duvel, D. Z. Natu. Forsch. B. 1970, 25, 1171. (b) IARC. IARC Monographs on the evaluation of the Carcinogenic Risk of Chemials to Humans: Polynuclear Aromatic Compounds, Part 1. Chemical Environmental and Experimental Data. Vol. 32, Internat, Agency REs. Cancer: Lyon, France, 1983.
    [4] Loeb, L. A.; Ernester, V. L.; Warner, K. E.; Abbotts, J.; Laszlo, J.; J. Cancer Res. 1984, 44, 5940.
    [5] Blumer, M.; Chem. Geol. 1975, 16, 245.
    [6] Gutman, I.; Cyvin, S. J.; Introduction to the theory of Benzenoid hydrocarbons, Spinger-Verlag: Berlin. 1989, pp. 140-142.
    [7] (a) Gama, V.; Henriques, R. T.; Bonfait, G.; Almeida. M.; Meetsma, A.; van Smaalen, S.; de Boer, J. L.; J. Am. Chem. Soc. 1992, 114, 1986. (b) Dias, C. B.; Santos, I. C.; Gama, V.; Henriques, R. I. Almeida, M.; Pouget, J. P.; Synth. Met. 1993, 56, 1688.
    [8] Hiramoto, M.; Kishigami. Y.; Yokoyama, M.; Chem. Lett. 1990, 119.
    [9] Tyutyulkov, N.; Karabunarliev, S.; Mullen, K.; Baumgarten, M.; Synth. Met. 1993, 53, 205.
    [10] Floyd, A. J.; Dykes, S. F.; Ward, S. E.; Chem. Rev 1976, 76, 509.
    [11] Traxler, J. T.; Krbechek, L. O.; Riter, R. R.; Wagner, R. G.; Huffmann, C. W.; J. Med.Chem. 1971, 14, 90.
    [12] Wilson, S.; Ruenitz, P. C.; J. Pharm. Sci. 1992, 82, 571.
    [13] (a) Novak, B. H.; Lash, T. D.; J. Org. Chem. 1998, 63, 3998. (b) Tanaka, F.; Mase, N.; Barabas, C. F.; J. Am. Chem. Soc. 2004, 126, 3692.
    [14] (a) Afferden, V.; Schacht, M.; Klein, S.; Trüper, J. H. G.: Arch. Microbiol. 1990, 153, 324. (b) Cerniglia, C. E.: Biodegradation. 1992, 3, 351. (c) Erickson, D. C.; Loehr, R. C.; Neuhauser, E. F.; Wat. Res. 1993, 27, 911. (d) Kumar, S.; Kumar, A.; Sikka, H. C.; Polycyclic. Arom. Comp. 2004, 24, 527.
    [15] Kumar, S.; Chem. Soc. Rev. 2006, 35, 83.
    [16] (a) Cannon, J. G.; Khonji, R. R.; J. Med. Chem. 1975, 18, 110. (b) Saari, W. S.; King, S. W.; J. Med. Chem. 1973, 16, 171.
    [17] For reviews see: (a) Larock, R. C. J. Organomet. Chem. 1999, 576, 111. (b) Larock, R. C. In Palladium catalyzed Annulation In Perspectives In Organopalladium Chemistry for the XII Century; Tsuji, J., Ed.; Elsevier Press: Lasuanne Switzerland, 1999; pp 111-124. (c) Larock, R. C.; Pure. Appl. Chem. 1999, 71, 1435. (d) Larock, R. C.; Doty, M. J.; Tian. Q.; Zenner. J. M.; J. Org. Chem. 1997, 62, 7536. (e) Larock, R. C.; Tian. Q.; J. Org. Chem. 1998, 63, 2002.
    [18] (a) Campo, M. A.; Larock, R. C.; Org. Lett. 2000, 2, 3675. (b) Aracadi, A.; Cacchi, S.; Fabrizi, G.; Moro, L.; J. Org. Chem. 1999, 64, 1137. (c) Cacchi, S.; Fabrizi, G.; Pace, P.; Marinelli, F.; Synlett 1999, 5, 620. (d) Arcadi, A.; Cacchi, S.; Carnicelli, V.; Marinelli, F.; Tetrahedron 1994, 50, 437. (e) Arcadi, A.; Cacchi, S.; Rosario, M.; Fabrizi, G.; Marinelli, F.; J. Org. Chem. 1996, 61, 9280. (f) Campo, M. A.; Larock, R. C.; J. Org. Chem. 2002, 67, 5616.
    [19] (a) Cram, D. J.; Nature 1992, 356, 29. (b) Schwatz, E. B.; Knobler, C. B.; Cram, D.; J. Am. Chem. Soc. 1992, 114, 10775. (c) Dijikstra, P. J.; Skowronska-Ptasinska, M.; Reinhoudt, D. N.; Den Hertog, H. J.; Van Eerden, J.; Harkema, S.; DeZeeuw, D.; J. Org. Chem. 1987, 52, 4913.
    [20] (a) Fieser, L. F.; Org. Reactions. 1942, 1, 129. (b) Clar, E. Polycyclic Hydrocarbons, Academic Press: New York, 1964. (c) DeTaer, D. F.; Org. Reactions 1957, 9, 409.
    [21] (a) Berliner, E.; Org. Reactions 1949, 5, 229. (b) Johnson, W. S.; Org. Reactions 1944, 2, 114.
    [22] (a) Davies, W.; Porter, Q. N.; J. Chem. Soc. 1957, 4967. (b) Ilhan, F.; Tyson, D. S.; Meador, M. A.; Org. Lett. 2006, 8, 577.
    [23] (a) Mallory, F. B.; Mallory, C. W.; Org. Reactions 1984, 30, 1. (b) Laarhoven, W. H.; Rec. Trav. Chim. 1983, 102, 185. (c) Blakburn, E. V.; Timmons, T.; J. Quart. Rev. Chem. Soc. 1969, 23, 482. (d) Laarhoven, W. H.; Cuppen, T. J.; Nivard, R. J.; Tetrahedron 1970, 26, 1069.
    [24] (a) Scott, L. T.; Cheng, P-, C.; Bratcher, M. S.; Seventh Internat. Symp. Novel Aromatic Compounds. Victoria, Canada, July 9-24, 1992. (b) Scott, L. T.; Hashemi, M. M.; Meyer, D. T.; Warren, H. B.; J. Am. Chem. Soc. 1991, 113, 7082. (c) Rabideau, P. W.; J. Am. Chem. Soc. 1994, 116, 7891.
    [25] (a) Minsky, A.; Rabinovitz, M.; Synthesis, 1983, 497. (b) Yang, C.; Yang, D.; Harvey, R. G.; Synlett, 1992, 799.
    [26] (a) Nenitzescu, C. D.; Balaban, A. T.; Friedel Crafts and Related Reactions, Vol. II. Interscience New York, 1964. For other methods see (b) Bergman, E. D.; Plechowicz, Z. J.; J. Am. Chem. Soc. 1953, 75, 2663. (c) Jutz, J. C.; Topics in Current Chemistry. 1978, 73, 127. (d) Tiecco, M.; J. Chem. Soc. Chem. Commu. 1965, 555. (e) Barton, J. W.; Grinham, A. R.; J. Chem. Soc. Perkin. I 1972, 634.
    [27] (a) Bradsher, C. K.; Chem. Rev. 1987, 87, 1277. (b) Newman, M. S.; Galt, R. H. B.; J. Org. Chem. 1960, 25, 214. (c) Mamane, V.; Hannen, P.; Furstner, A.; Chem. Eur. J. 2004, 10, 4556.
    [28] (a) Ramana, M. M. V.; Potnis, P. V.; Synthesis 1996, 1090. (b) Radhakrishnan, K. V.; Yoshikawa, E.; Yamamoto, Y.; Tetrahedron Lett. 1999, 7533. (c) Paredes, E.; Biolatto, B.; Kneetmann, M.; Macini, P.; Tetrahedron Lett. 2002, 4601.
    [29] (a) Harrowven, D. C.; Nunn, M. I. T.; Fenwick, D. R.; Tetrahedron Lett. 2002, 3185. (b) Almeida, J. F.; Castedo, L.; Fernandez, D.; Neo, A. G.; Romero, V.; Tojo, G.; Org. Lett. 2003, 5, 4939.
    [30] Schultz, A.; LAschat, S.; Diele, S.; Nimtz, M.; Eur. J. Org. Chem. 2003, 2829.
    [31] (a) Bartlett, P. A.; In Assymetric Synthesis; Morrison, J. D., Ed.; Academic Press: Orlando, FL, 1984; Vol. 3, p 341. (b) Kitagawas, O.; Inoue, T.; Taguchi; T.; In Reviews on Heteroatom Chemistry; Oae, S., Ed.; MY: Tpkyo, Japan, 1996; Vol. 15, p 243. (c) Cardillo, G.; Orena, M.; Tetrahedron 1990, 46, 3321. (d) Frederickson, M.; Grigg, R.; Org. Prep. Proc. Int. 1997, 29, 33.
    [32] (a) Mamane, V.; Furstner, A.; J. Org. Chem. 2002, 67, 6264. (b) Larock, R. C.; Doty, M. J.; Tian, Q.; Zenner, J. M.; J. Org. Chem. 1997, 62, 7536. (c) Campo, M. A.; Huang, Q.; Yao, T. I.; Tian, Q.; Larock, R. C.; J. Am. Chem. Soc. 2003, 25, 11506. (d) Campo, M.; Larock, R. C.; J. Org. Chem. 2002, 67, 5616. (e) Dyker, G. Kellener, A.; Tetrahedron Lett. 1994, 35, 7633.
    [33] Swager, M. T.; Yamaguchi, S.; J. Am. Chem. Soc. 2001, 123, 12087.
    [34] Iuliano, A.; Paolo, P.; Fabrri, D.; Org. Lett. 2004, 6, 3711.
    [35] Clive, D. L. J.; Chittau, G.; Curtis, N.; Keil, W. A.; Wong, C. K.; J. Chem. Soc. Chem. Commun. 1977, 725.
    [36] (a) VanTamelen, E. E.; Acc. Chem. Res. 1975, 8, 152. (b) Johnson, W. S.; Angew. Chem., Int. Ed. 1976, 15, 9. (c) Sutherland, J. K.; Chem. Soc. Rev. 1980, 9, 265. (d) Hegedus, L. S.; Allen, G. F.; Olsen, D. J.; J. Am. Chem. Soc. 1980, 102, 3583.
    [37] Kumar, S.; Varshney, S. K.; Mol. Cryst. Liq. Cryst. 2002. 59, 378.
    [38] (a) Kitamura, T.; Takachi, T.; Kawasato, H.; Taniguchi, H.; J. Chem. Soc., Perkin Trans. 1 1992, 1969. (b) For a similar Lewis acid promoted cyclizations, see: Fustner, A.; Mamane, V.; J. Org. Chem. 2002, 67, 6264. (c) Pastine, S. J.; Youn, S. W.; Sames, D.; Org. Lett. 2003, 5, 1055. (d) Pastine, S. J.; Youn, S. W.; Sames, D.; Tetrahedron 2003, 59, 8859.
    [39] (a) Larock, R. C.; Yue, D.; Tetrahedron Lett. 2001, 6011. (b) Yue, D.; Larock, R. C.; J. Org. Chem. 2002, 67, 1905. (c) Flynn, B. L.; Verdier- Pinard, P.; Hamel, E.; Org. Lett. 2001, 3, 651.
    [40] (a) Huang, Q.; Hunter, J. A.; Larock, R. C.; Org. Lett. 2001, 3, 2973. (b) Huang, Q.; Hunter, J. A.; Larock, R. C.; J. Org. Chem. 2002, 67, 3437.
    [41] (a) Yao, T.; Larock, R. C.; Tetrahedron Lett. 2002, 7401. (b) Yao, T.; Larock, R. C.; J. Org. Chem. 2003, 68, 5936. (c) Oliver, M. A.; Gandour, R. D.; J. Org. Chem. 1984, 49, 558. (d) Biaggetti, M.; Bellina, F.; Carpita, A.; Stabile, P.; Rossi, R.; Tetrahedron 2002, 58, 5023. (e) Rossi, R.; Carpita, A. Bellina, F. Stabbile, L.; Mannina, L.; Tetrahedron 2003, 59, 2067.
    [42] (a) Arcadi, A.; Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L.; Synlett 1999, 1432. (b) Yue, D.; Yao, T.; Larock, R. C.; J. Org. Chem. 2005, 70, 10292.
    [43] (a) Bew, S. P.; Knight, D. W.; J. Chem. Soc., Chem. Commun. 1996, 1007. (b) Djuardi, E.; McNelis, E.; Tetrahedron Lett. 1999, 7193. (c) El-Taeb, G. M. M.; Evans, A. B.; Jones, S.; Knight, D. W. C.; Tetrahedron Lett. 2001, 42, 5945. (d) Rao, M. S.; Esho, N.; Sergent, C.; Dembinski, R. J.; J. Org. Chem. 2003, 68, 6788.
    [44] (a) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M.; Angew. Chem., Int. Ed. 2003, 42, 2406. (b) Yue, D.; Larock, R. C.; Org. Lett. 2004, 6, 1037.
    [45] Arcadi, A.; Cacchi, S.; Di Giuseppe, S.; Fabrizi, G.; Marinelli, F.; Org. Lett. 2002, 4, 2409.
    [46] Marshall, J. A.; Yanik, M. M.; J. Org. Chem. 1999, 64, 3798.
    [47] Knight, D. W.; Redfern, A. L.; Gilmore, J.; J. Chem. Soc., Chem.. Comuun. 1998, 2207.
    [48] (a) Barluenga, J.; Vazque-Villa, H.; Ballesteros, A.; Gonalez, J. M.; J. Am. Chem. Soc. 2003, 125, 9028. (b) Barluenga, J.; Vazque-Villa, H.; Ballesteros, A.; Org. Lett. 2003, 5, 4121.
    [49] (a) Ren, F-F.; Konaklieva, M. I.; Shi, H.; Dickey, S.; Lim, D. V.; Gonalez, J.; Turos, E.; J. Org. Chem. 1998, 63, 8898. (b) Asao, N.; Nogami, T.; Takahashi, K.; Yamamoto, Y.; J. Am. Chem. Soc. 2002, 124, 764. (c) Nakamura, H.; Ohtaka, M.; Yamamoto, Y.; Tetrahedron Lett. 2002, 7631. (d) Peng, A. -Y.; Ding, Y. -X.; Org. Lett. 2004, 6, 1119. (e) Yao, T.; Larock, R. C.; J. Org. Chem. 2005, 70, 1232.
    [50] Barluenga, J.; Gonzalez, J. M.; Campos, P. J.; Asension, G.; Angew Chem., Int. Ed. 1988, 27, 1546.
    [51] (a) Goldfinger, M. B.; Crawford, K. B.; Swager, T. M.; J. Am. Chem. Soc. 1997, 119, 4578. (b) Goldfinger, M. B.; Swager, T. M.; J. Am. Chem. Soc. 1997, 119, 4578.
    [52] (a) Yao, T.; Campo, A. M.; Larock, R. C.; Org. Lett. 2004, 6, 2677. (b) Yao, T.; Campo, A. M.; Larock, R. C.; J. Org. Chem. 2005, 70, 3511.
    [53] Zhang. X.; Larock, R. C.; J. Am. Chem. Soc. 2005, 127, 12230.
    [54] Shaopeng, W.; Andrew, C.; John, S. S.; J. Org. Chem. 1990, 55, 2272.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE