研究生: |
陳奕君 Chen, Yi Chun |
---|---|
論文名稱: |
環境應答性複合型奈米微胞及其在癌症治療之應用 Mixed Micellar Systems based on Environmental-Responsive Copolymers for Application in Cancer Therapy |
指導教授: |
薛敬和
Hsiue, Ging Ho |
口試委員: |
薛敬和
Hsiue, Ging Ho 許明照 Sheu, Ming Thau 陳三元 Chen, San Yuan 楊台鴻 Young, Tai Horng 駱俊良 Lo, Chun Liang 蔡協致 Tsai, Hsieh Chih |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 191 |
中文關鍵詞: | 高分子微胞 、酸鹼應答性 、溫度應答性 、藥物傳輸 、癌症治療 |
外文關鍵詞: | Polymeric micelles, pH-responsive, Temperature-responsive, Drug delivery, Cancer therapy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高分子微胞被認為是目前最有潛力的藥物載體,其優點包括降低細胞毒性、保護藥物在體內不易被酵素分解、增加藥物在體內的溶解度而提高藥物效率、延長體內循環時間而使藥物能累積在適當的組織,達到局部釋放的效果、躲避巨噬細胞與內質網的功能、在高分子微胞表面接上特定的功能性官能基等。本研究主要藉由合成生物可分解性多功能性高分子,製備奈米載體並應用藥物傳遞及其在癌症顯影及治療之研究。
本研究所製備之奈米載體具有以下優點:一、高分子在生物分解後不具毒性。二、可增加細胞與腫瘤傳輸藥物效率。三、具備生物體內腫瘤的標的性與顯影性。結合奈米科技、螢光與放射顯影的技術,並評估嶄新奈米載體對腫瘤治療之效益,以及未來做為癌症診斷試劑之可行性。本研究分為三個主題分別論述內容如下:
第一部分、雙重應答微胞在腫瘤組織的累積
本研究合成具有酸鹼應答性與溫度應答性的團聯高分子mPEG-b-P(HPMA-Lac-co-His) 以及具有低微胞臨界濃度的mPEG-b-PLA,以熱衝擊法製備雙重應答微胞,雙重應答微胞是藉由溫度及酸鹼敏感型微胞控制藥物釋放,加入臨界微胞濃度的雙性團聯共聚物,增加進入血液循環中藥物載體的穩定,使微胞至具有弱酸性環境的腫瘤病理部位將藥物釋放,具備免疫迴避性的智慧型功能之外殼,雙重應答微胞同時具有環境應答性、生物可分解性與生物造影性及藥物釋放功能,在病理位置溢出血管,且微胞尺寸改變並滯留於腫瘤組織中,藉由螢光標記觀察活體影像,奈米微胞以被動標的方式大量累積於腫瘤組織,實驗證明載體具有癌症治療潛力並達到降低藥物副作用之目的。
第二部分、應用雙重應答微胞輸送疏水性藥物Rapamycin
Rapamycin研究發現有抗生素、免疫抑制及抗腫瘤的作用,然而Rapamycin在應用於治療上有所限制,Rapamycin為疏水性的藥物,在人體血液中為不穩定易聚集的狀態,Rapamycin在水中溶解度僅2.6 μg/mL,對於進行靜脈注射為一大受限,且經口服途徑藥物也僅有15%的生物利用度(bioavailability),因此將疏水性藥物Rapamycin包覆於親水性的載體為一大利多。本章應用第一部分之複合型高分子微胞,具有雙重應答與完整的殼核結構,並藉由親水性的表面保護疏水性藥物Rapamycin。此微胞是藉由溫度及酸鹼敏感型微胞進一步控制藥物釋放,使微胞至具有弱酸性環境的腫瘤部位將藥物釋放,藉以準確達到毒殺大腸癌細胞的效果,但repamycin藥物本身引發自體吞噬形成雙層膜的autophagosomes的產生,接下來以與lysosomes融合後形成autophagolysosome,然而對於某些癌細胞而言,autophagosomes的發生會抑制細胞凋亡途徑,因此對於癌細胞的抑制為雙面刃,共軛焦顯微鏡影像發現以複合型奈米微胞進入細胞後引發形成autophagolysosome,在酸性環境下將藥物釋出,藉以對於細胞毒殺有控制成效,應用大腸癌模式裸鼠證實達到治療大腸癌的成果,並使腫瘤切片中的癌細胞凋亡。
第三部分、接枝與團聯高分子製備高穩定性奈米載體及其在抗藥性腫瘤之應用
本研究應用接枝共聚物PLA-g-P(HPMA-Lac-co-His)與團聯共聚物mPEG-b-PLA混合自組裝形成複合型高分子奈米微胞, PLA-g-P(HPMA-Lac-co-His)為在HPMA主鏈修飾Lactate增加其穩定性,並以PLA側鏈穩定藥物的內核,並應用團聯共聚物mPEG-b-PLA藉以增加其在小牛血清蛋白溶液中的穩定性,在酸性條件下(~pH 6.0),即藥物載體位於secondary lysosome,複合型奈米微胞可藉由此酸鹼值的改變達到藥物釋放的效果,細胞實驗證實高穩定性複合型奈米微胞可更有效率將藥物傳輸至細胞核內,動物活體影像發現複合型奈米微胞可經由EPR效應大量累積於腫瘤部位,且由於增加穩定性的奈米載體,可增加藥物在腫瘤的累積量,可克服肺癌細胞LL/2產生的抗藥性,動物模式腫瘤切片觀察證明累積較多的藥物在細胞核中,並具有較佳的治療肺癌腫瘤的效果以及提高存活率,此結果可證實高穩定複合性微胞可做為抗藥性腫瘤治療之應用。
For anticancer drug delivery systems, many systems have been discussed and exemplified regarding as traditional systems such as polymer-based therapeutics, liposomes, and inorganic particles. Polymer therapeutic is considered to be a potential candidate displaying well bioavailability and high molecular manipulation for use in cancer treatment. The term polymer therapeutics describes several distinct classes of agent, including polymer-drug conjugates, micelles and mixed micelles that have now entered clinical development because of their intrinsic physical properties and their abilities to target specific locations. Much research has recently been focused on the study of mixed micelles as drug carriers in the hunt for improved cancer therapy. The potential advantages of mixed micelles as potential drug carriers include 1) the fact that they can be degraded into nontoxic substances that may be readily excreted by the body; 2) the possibility of modulating the micellar structure to improve intracellular drug delivery; and 3) the possibility of modifying the polymers for in vivo cancer targeting and imaging. Despite such potential advantages, in vivo studies on mixed micelles as potential anticancer drug delivery systems remain scanty. The major problem that limits the wider application of mixed micelles as a drug carrier is the uncertainty about the structure of micelles during micellization in individual and mixed micellar systems. Therefore, my major is focus on the mixed micellar systems for the in vivo application, as follows:
(1) The Accumulation of Dual pH and Temperature Responsive Micelles in Tumors
An optimized, biodegradable, dual temperature- and pH- responsive micelle system prepared from methoxy poly(ethylene glycol)-block-poly(N- (2-hydroxypropyl) methacrylamide dilactate)-co-(N-(2-hydroxypropyl) methacrylamide-co-histidine) (mPEG-b-P(HPMA-Lac-co-His)) copolymer and methoxy poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-b-PLA) copolymer conjugated with functional group Cy 5.5 was prepared in order to enhance tumor accumulation. Anticancer drug, doxorubicin was incorporated into the inner core of micelle by hot shock protocol. The size and stability of the micelle were controlled by the copolymer composition and is fine tuned to extracellular pH of tumor. The mechanism then caused pH change and at body temperature which induce doxorubicin release from micelles and have strong effects on the viability of HeLa, ZR-75-1, MCF-7 and H661 cancer cells. Our in vivo results revealed a clear distribution of Doxorubicin-loaded mixed micelle (Dox-micelle) and efficiency targeting tumor site with particles increasing size in the tumor interstitial space, and the particles could not diffuse throughout the tumor matrix. In vivo tumor growth inhibition showed that Dox-micelle exhibited excellent antitumor activity and a high rate of anticancer drug in cancer cells by this strategy.
(2) Rapamycin Encapsulated in Dual-Responsive Micelles for Intracellular Drug Delivery
Rapamycin has been developed as a potential anticancer drug for treatment in rapamycin-sensitive cancer models, but its poor water solubility greatly hampers the application to cancer therapy. This study investigated the preparation, release profiles, uptake and in vitro/in vivo study of a dual responsive micellar formulation of rapamycin. Rapamycin-loaded micelles (rapa-micelles) measured approximately ca. 150 nm with narrow size distribution and high stability in bovine serum albumin solution. It was shown that rapamycin could be loaded efficiently in mixed micelles up to a concentration of 1.8 mg/mL by a hot shock protocol. Rapamycin release kinetic studies demonstrated that this type of micellar system could be applied in physiological conditions under varied pH environments. Confocal and pH-topography imaging revealed a clear distribution of rapa-micelles, and visible intracellular pH changes which induced encapsulated rapamycin to be released and then induced autophagolysosome formation. In vivo tumor growth inhibition showed that rapa-micelles exhibited excellent antitumor activity and a high rate of apoptosis in HCT116 cancer cells. These results indicated that dual responsive mixed micelles provided a suitable delivery system for the parenteral administration of drugs with poor water solubility, such as rapamycin, in cancer therapy.
(3) Graft and Diblock Micelles with Enhanced Stability for Overcoming Multidrug Resistance in Cancer
A graft and diblock polymeric micelles, self-assembling from poly(N-(2-hydroxypropyl) methacrylamide dilactate)-co-(N-(2-hydroxypropyl) methacrylamide-co-histidine)-graft-poly(D,L-lactide) graft copolymers and methoxyl/functionalized-PEG-b-PLA diblock copolymers, as an anticancer drug doxorubicin carrier for cancer targeting, imaging, and overcoming multidrug resistance in cancer therapy. This high stability nanoparticle exhibited a pH-dependent drug release behavior, owning to the pH-sensitive structure of imidazole of histidine, to release doxorubicin in acidic surroundings (intracellular endosomes) and to capsulate doxorubicin in neutral surroundings (blood circulation or extracellular matrix). The in vitro results revealed released doxorubicin from mixed micelles was more effective accumulation into the nuclei than free doxorubicin. Imaging by in vivo image system showed that high stability ensures a high intratumoral accumulation due to EPR effect. Mixed micelles with enhanced stability inherently overcome a certain degree of multidrug resistance by tumor cells, since such vesicles can deliver between more drug to solid lesions when compared with the administered drug in its free drug. In vivo tumor growth inhibition shows that nanoparticles exhibited excellent antitumor activity and a high rate of apoptosis in cancer cells. The results indicate that the high stbility carriers with a pH-dependent drug release can be allowed to accurately deliver to targeted tumors for multidrug-resistant cancer therapy.
[1] Hamed S, Barshack I, Luboshits G, Wexler D, Deutsch V, Keren G, et al. Erythropoietin improves myocardial performance in doxorubicin-induced cardiomyopathy. Eur Heart J. 2006;27:1876-83.
[2] Wang S, Konorev EA, Kotamraju S, Joseph J, Kalivendi S, Kalyanaraman B. Doxorubicin Induces Apoptosis in Normal and Tumor Cells via Distinctly Different Mechanisms. J Biol Chem. 2004;279:25535-43.
[3] Mayer LD, Tai LCL, Ko DSC, Masin D, Ginsberg RS, Cullis PR, et al. Influence of Vesicle Size, Lipid Composition, and Drug-to-Lipid Ratio on the Biological Activity of Liposomal Doxorubicin in Mice. Cancer Res. 1989;49:5922-30.
[4] Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771-82.
[5] Torchilin VP. Multifunctional nanocarriers. Adv Drug Del Rev. 2006;58:1532-55.
[6] Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano Today. 2012;7:53-65.
[7] Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Controlled Release. 2002;82:189-212.
[8] Carstens MG, Bevernage JJL, van Nostrum CF, van Steenbergen MJ, Flesch FM, Verrijk R, et al. Small Oligomeric Micelles Based on End Group Modified mPEG−Oligocaprolactone with Monodisperse Hydrophobic Blocks. Macromolecules. 2006;40:116-22.
[9] Van Domeselaar GH, Kwon GS, Andrew LC, Wishart DS. Application of solid phase peptide synthesis to engineering PEO–peptide block copolymers for drug delivery. Colloids Surf B Biointerfaces. 2003;30:323-34.
[10] Lee J, Cho EC, Cho K. Incorporation and release behavior of hydrophobic drug in functionalized poly(d,l-lactide)-block–poly(ethylene oxide) micelles. J Controlled Release. 2004;94:323-35.
[11] Lo C-L, Lin S-J, Tsai H-C, Chan W-H, Tsai C-H, Cheng C-HD, et al. Mixed micelle systems formed from critical micelle concentration and temperature-sensitive diblock copolymers for doxorubicin delivery. Biomaterials. 2009;30:3961-70.
[12] Christie RJ, Matsumoto Y, Miyata K, Nomoto T, Fukushima S, Osada K, et al. Targeted Polymeric Micelles for siRNA Treatment of Experimental Cancer by Intravenous Injection. ACS Nano. 2012.
[13] Kim SH, Tan JPK, Nederberg F, Fukushima K, Yang YY, Waymouth RM, et al. Mixed Micelle Formation through Stereocomplexation between Enantiomeric Poly(lactide) Block Copolymers. Macromolecules. 2009;42:25-9.
[14] Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, et al. Doxorubicin-loaded poly(ethylene glycol)–poly(β-benzyl-l-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Controlled Release. 2000;64:143-53.
[15] Sumitani S, Nagasaki Y. Boron neutron capture therapy assisted by boron-conjugated nanoparticles. Polym J. 2012;44:522-30.
[16] Xu X, Flores JD, McCormick CL. Reversible Imine Shell Cross-Linked Micelles from Aqueous RAFT-Synthesized Thermoresponsive Triblock Copolymers as Potential Nanocarriers for “pH-Triggered” Drug Release. Macromolecules. 2011;44:1327-34.
[17] Talelli M, Iman M, Varkouhi AK, Rijcken CJF, Schiffelers RM, Etrych T, et al. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin. Biomaterials. 2010;31:7797-804.
[18] Carstens MG, Rijcken CJF, Nostrum CF, Hennink WE. Pharmaceutical Micelles: Combining Longevity, Stability, and Stimuli Sensitivity. 2008. p. 263-308.
[19] Crommelin DJA, Scherphof G, Storm G. Active targeting with particulate carrier systems in the blood compartment. Adv Drug Del Rev. 1995;17:49-60.
[20] Gref R, Domb A, Quellec P, Blunk T, Müller RH, Verbavatz JM, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Del Rev. 1995;16:215-33.
[21] Papisov MI. Theoretical considerations of RES-avoiding liposomes: Molecular mechanics and chemistry of liposome interactions. Adv Drug Del Rev. 1998;32:119-38.
[22] Park JH, Lee S, Kim J-H, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Prog Polym Sci. 2008;33:113-37.
[23] Talelli M, Rijcken CJF, van Nostrum CF, Storm G, Hennink WE. Micelles based on HPMA copolymers. Adv Drug Del Rev. 2010;62:231-9.
[24] Morille M, Montier T, Legras P, Carmoy N, Brodin P, Pitard B, et al. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials. 2010;31:321-9.
[25] Vonarbourg A, Passirani C, Saulnier P, Benoit J-P. Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials. 2006;27:4356-73.
[26] Torchilin VP. Fluorescence microscopy to follow the targeting of liposomes and micelles to cells and their intracellular fate. Adv Drug Del Rev. 2005;57:95-109.
[27] Huang C-K, Lo C-L, Chen H-H, Hsiue G-H. Multifunctional Micelles for Cancer Cell Targeting, Distribution Imaging, and Anticancer Drug Delivery. Adv Funct Mater. 2007;17:2291-7.
[28] Hans M, Shimoni K, Danino D, Siegel SJ, Lowman A. Synthesis and Characterization of mPEG−PLA Prodrug Micelles. Biomacromolecules. 2005;6:2708-17.
[29] Dong Y, Feng S-S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. Biomaterials. 2004;25:2843-9.
[30] Lo C-L, Huang C-K, Lin K-M, Hsiue G-H. Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery. Biomaterials. 2007;28:1225-35.
[31] Tsai H-C, Chang W-H, Lo C-L, Tsai C-H, Chang C-H, Ou T-W, et al. Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Biomaterials. 2010;31:2293-301.
[32] Soga O, van Nostrum CF, Fens M, Rijcken CJF, Schiffelers RM, Storm G, et al. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Controlled Release. 2005;103:341-53.
[33] Lo C-L, Lin K-M, Huang C-K, Hsiue G-H. Self-Assembly of a Micelle Structure from Graft and Diblock Copolymers: An Example of Overcoming the Limitations of Polyions in Drug Delivery. Adv Funct Mater. 2006;16:2309-16.
[34] Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Controlled Release. 2010;148:135-46.
[35] Maeda H. Tumor-Selective Delivery of Macromolecular Drugs via the EPR Effect: Background and Future Prospects. Bioconjugate Chem. 2010;21:797-802.
[36] Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Del Rev. 2011;63:136-51.
[37] Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences. 1998;95:4607-12.
[38] Lu H-L, Syu W-J, Nishiyama N, Kataoka K, Lai P-S. Dendrimer phthalocyanine-encapsulated polymeric micelle-mediated photochemical internalization extends the efficacy of photodynamic therapy and overcomes drug-resistance in vivo. J Controlled Release. 2011;155:458-64.
[39] Kerbel RS. Tumor Angiogenesis. New Engl J Med. 2008;358:2039-49.
[40] Skinner SA, Tutton PJM, O'Brien PE. Microvascular Architecture of Experimental Colon Tumors in the Rat. Cancer Res. 1990;50:2411-7.
[41] Daruwalla J, Nikfarjam M, Greish K, Malcontenti-Wilson C, Muralidharan V, Christophi C, et al. In vitro and in vivo evaluation of tumor targeting SMA-pirarubicin micelles: Survival improvement and inhibition of liver metastases. Cancer Sci. 2010;9999.
[42] Greish K, Nagamitsu A, Fang J, Maeda H. Copoly(styrene-maleic acid)−Pirarubicin Micelles: High Tumor-Targeting Efficiency with Little Toxicity1. Bioconjugate Chem. 2004;16:230-6.
[43] Allen TM. Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer. 2002;2:750-63.
[44] Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. 2006;5:219-34.
[45] Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994;73:2432-43.
[46] Bae Y, Nishiyama N, Kataoka K. In Vivo Antitumor Activity of the Folate-Conjugated pH-Sensitive Polymeric Micelle Selectively Releasing Adriamycin in the Intracellular Acidic Compartments. Bioconjugate Chem. 2007;18:1131-9.
[47] Lu P-L, Chen Y-C, Ou T-W, Chen H-H, Tsai H-C, Wen C-J, et al. Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials. 2011;32:2213-21.
[48] Schwartz AL, Bolognesi A, Fridovich SE. Recycling of the asialoglycoprotein receptor and the effect of lysosomotropic amines in hepatoma cells. J Cell Biol. 1984;98:732-8.
[49] Yang R, Meng F, Ma S, Huang F, Liu H, Zhong Z. Galactose-Decorated Cross-Linked Biodegradable Poly(ethylene glycol)-b-poly(ε-caprolactone) Block Copolymer Micelles for Enhanced Hepatoma-Targeting Delivery of Paclitaxel. Biomacromolecules. 2011;12:3047-55.
[50] Yamano S, Dai J, Yuvienco C, Khapli S, Moursi AM, Montclare JK. Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J Controlled Release. 2011;152:278-85.
[51] Sethuraman VA, Bae YH. TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Controlled Release. 2007;118:216-24.
[52] Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Del Rev. 2004;56:1649-59.
[53] Shi M, Ho K, Keating A, Shoichet MS. Doxorubicin-Conjugated Immuno-Nanoparticles for Intracellular Anticancer Drug Delivery. Adv Funct Mater. 2009;19:1689-96.
[54] Tannock IF, Rotin D. Acid pH in Tumors and Its Potential for Therapeutic Exploitation. Cancer Res. 1989;49:4373-84.
[55] Gerweck LE, Vijayappa S, Kozin S. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther. 2006;5:1275-9.
[56] Dirk S. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Del Rev. 2006;58:1655-70.
[57] Hubbell JA. Enhancing Drug Function. Science. 2003;300:595-6.
[58] Li Y-L, Zhu L, Liu Z, Cheng R, Meng F, Cui J-H, et al. Reversibly Stabilized Multifunctional Dextran Nanoparticles Efficiently Deliver Doxorubicin into the Nuclei of Cancer Cells13. Angew Chem Int Ed. 2009;48:9914-8.
[59] Chen Y-C, Liao L-C, Lu P-L, Lo C-L, Tsai H-C, Huang C-Y, et al. The accumulation of dual pH and temperature responsive micelles in tumors. Biomaterials. 2012;33:4576-88.
[60] Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Controlled Release. 2005;103:405-18.
[61] Lee ES, Na K, Bae YH. Super pH-Sensitive Multifunctional Polymeric Micelle. Nano Lett. 2005;5:325-9.
[62] Kim D, Gao ZG, Lee ES, Bae YH. In Vivo Evaluation of Doxorubicin-Loaded Polymeric Micelles Targeting Folate Receptors and Early Endosomal pH in Drug-Resistant Ovarian Cancer. Mol Pharm. 2009;6:1353-62.
[63] Kim D, Lee ES, Oh KT, Gao ZG, Bae YH. Doxorubicin-Loaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Double-Targeting Folate Receptor and Early Endosomal pH. Small. 2008;4:2043-50.
[64] Johnson RP, Jeong Y-I, Choi E, Chung C-W, Kang DH, Oh S-O, et al. Biocompatible Poly(2-hydroxyethyl methacrylate)-b-poly(L-histidine) Hybrid Materials for pH-Sensitive Intracellular Anticancer Drug Delivery. Adv Funct Mater. 2011:n/a-n/a.
[65] Lin S-Y, Hsu W-H, Lo J-M, Tsai H-C, Hsiue G-H. Novel geometry type of nanocarriers mitigated the phagocytosis for drug delivery. J Controlled Release. 2011;154:84-92.
[66] Tsai H-C, Chang C-H, Chiu Y-C, Lin S-Y, Lin C-P, Hsiue G-H. In vitro Evaluation of Hexagonal Polymeric Micelles in Macrophage Phagocytosis. Macromol Rapid Commun. 2011;32:1442-6.
[67] Tsai H-C, Tsai C-H, Lin S-Y, Jhang C-R, Chiang Y-S, Hsiue G-H. Stimulated release of photosensitizers from graft and diblock micelles for photodynamic therapy. Biomaterials. 2012;33:1827-37.
[68] Hsiue G-H, Wang C-H, Lo C-L, Wang C-H, Li J-P, Yang J-L. Environmental-sensitive micelles based on poly(2-ethyl-2-oxazoline)-b-poly(l-lactide) diblock copolymer for application in drug delivery. Int J Pharm. 2006;317:69-75.
[69] Wang C-H, Wang C-H, Hsiue G-H. Polymeric micelles with a pH-responsive structure as intracellular drug carriers. J Controlled Release. 2005;108:140-9.
[70] Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property: Tumor Permeability, Controlled Subcellular Drug Distribution, and Enhanced in Vivo Antitumor Efficacy. Bioconjugate Chem. 2004;16:122-30.
[71] Hrubý M, Koňák Č, Ulbrich K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Controlled Release. 2005;103:137-48.
[72] Alani AWG, Bae Y, Rao DA, Kwon GS. Polymeric micelles for the pH-dependent controlled, continuous low dose release of paclitaxel. Biomaterials. 2010;31:1765-72.
[73] Lee S, Saito K, Lee H-R, Lee MJ, Shibasaki Y, Oishi Y, et al. Hyperbranched Double Hydrophilic Block Copolymer Micelles of Poly(ethylene oxide) and Polyglycerol for pH-Responsive Drug Delivery. Biomacromolecules. 2012;13:1190-6.
[74] Binauld S, Scarano W, Stenzel MH. pH-Triggered Release of Platinum Drugs Conjugated to Micelles via an Acid-Cleavable Linker. Macromolecules. 2012;45:6989-99.
[75] Stefanadis C, Chrysochoou C, Markou D, Petraki K, Panagiotakos DB, Fasoulakis C, et al. Increased Temperature of Malignant Urinary Bladder Tumors In Vivo: The Application of a New Method Based on a Catheter Technique. J Clin Oncol. 2001;19:676-81.
[76] Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Controlled Release. 1998;53:119-30.
[77] Chung JE, Yokoyama M, Aoyagi T, Sakurai Y, Okano T. Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. J Controlled Release. 1998;53:119-30.
[78] Neradovic D, van Nostrum CF, Hennink WE. Thermoresponsive Polymeric Micelles with Controlled Instability Based on Hydrolytically Sensitive N-Isopropylacrylamide Copolymers. Macromolecules. 2001;34:7589-91.
[79] Dai S, Ravi P, Tam KC. Thermo- and photo-responsive polymeric systems. Soft Matter. 2009;5:2513-33.
[80] Nakayama M, Okano T, Miyazaki T, Kohori F, Sakai K, Yokoyama M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J Controlled Release. 2006;115:46-56.
[81] Kohori F, Sakai K, Aoyagi T, Yokoyama M, Yamato M, Sakurai Y, et al. Control of adriamycin cytotoxic activity using thermally responsive polymeric micelles composed of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide). Colloids Surf B Biointerfaces. 1999;16:195-205.
[82] Neradovic D, van Steenbergen MJ, Vansteelant L, Meijer YJ, van Nostrum CF, Hennink WE. Degradation Mechanism and Kinetics of Thermosensitive Polyacrylamides Containing Lactic Acid Side Chains. Macromolecules. 2003;36:7491-8.
[83] Neradovic D, Soga O, Van Nostrum CF, Hennink WE. The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials. 2004;25:2409-18.
[84] Soga O, van Nostrum CF, Hennink WE. Poly(N-(2-hydroxypropyl) Methacrylamide Mono/Di Lactate): A New Class of Biodegradable Polymers with Tuneable Thermosensitivity. Biomacromolecules. 2004;5:818-21.
[85] Soga O, van Nostrum CF, Ramzi A, Visser T, Soulimani F, Frederik PM, et al. Physicochemical Characterization of Degradable Thermosensitive Polymeric Micelles. Langmuir. 2004;20:9388-95.
[86] Rijcken CJF, Hofman J-W, van Zeeland F, Hennink WE, van Nostrum CF. Photosensitiser-loaded biodegradable polymeric micelles: Preparation, characterisation and in vitro PDT efficacy. J Controlled Release. 2007;124:144-53.
[87] Talelli M, Rijcken CJF, Lammers T, Seevinck PR, Storm G, van Nostrum CF, et al. Superparamagnetic Iron Oxide Nanoparticles Encapsulated in Biodegradable Thermosensitive Polymeric Micelles: Toward a Targeted Nanomedicine Suitable for Image-Guided Drug Delivery. Langmuir. 2009;25:2060-7.
[88] Schilli CM, Zhang M, Rizzardo E, Thang SH, Chong YK, Edwards K, et al. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules. 2004;37:7861-6.
[89] Soppimath KS, Tan DC-W, Yang Y-Y. pH-Triggered Thermally Responsive Polymer Core-Shell Nanoparticles for Drug Delivery. Adv Mater. 2005;17:318-23.
[90] Xu Y, Shi L, Ma R, Zhang W, An Y, Zhu XX. Synthesis and micellization of thermo- and pH-responsive block copolymer of poly(N-isopropylacrylamide)-block-poly(4-vinylpyridine). Polymer. 2007;48:1711-7.
[91] Zhang L, Guo R, Yang M, Jiang X, Liu B. Thermo and pH Dual-Responsive Nanoparticles for Anti-Cancer Drug Delivery. Adv Mater. 2007;19:2988-92.
[92] Li G, Shi L, An Y, Zhang W, Ma R. Double-responsive core-shell-corona micelles from self-assembly of diblock copolymer of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropylacrylamide). Polymer. 2006;47:4581-7.
[93] Tian H, Tang Z, Zhuang X, Chen X, Jing X. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog Polym Sci. 2012;37:237-80.
[94] Dong Y, Feng S-S. Nanoparticles of poly(D,L-lactide)/methoxy poly(ethylene glycol)-poly(D,L-lactide) blends for controlled release of paclitaxel. Journal of Biomedical Materials Research Part A. 2006;78A:12-9.
[95] Gref R, Minamitake Y, Peracchia M, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600-3.
[96] Forrest ML, Won C-Y, Malick AW, Kwon GS. In vitro release of the mTOR inhibitor rapamycin from poly(ethylene glycol)-b-poly([epsilon]-caprolactone) micelles. J Controlled Release. 2006;110:370-7.
[97] Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials. 2009;30:6358-66.
[98] Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Controlled Release. 2006;116:150-8.
[99] Discher DE, Ahmed F. POLYMERSOMES. Annu Rev Biomed Eng. 2006;8:323-41.
[100] Yamamoto Y, Nagasaki Y, Kato Y, Sugiyama Y, Kataoka K. Long-circulating poly(ethylene glycol)-poly(-lactide) block copolymer micelles with modulated surface charge. J Controlled Release. 2001;77:27-38.
[101] Yasugi K, Nagasaki Y, Kato M, Kataoka K. Preparation and characterization of polymer micelles from poly(ethylene glycol)-poly(d,l-lactide) block copolymers as potential drug carrier. J Controlled Release. 1999;62:89-100.
[102] Shin H-C, Alani AWG, Rao DA, Rockich NC, Kwon GS. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J Controlled Release. 2009;140:294-300.
[103] Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55:141-50.
[104] Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869-76.
[105] Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the National Academy of Sciences. 2006;103:6315-20.
[106] Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. J Controlled Release. 2009;133:11-7.
[107] Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, et al. Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32:8010-20.
[108] Park EK, Kim SY, Lee SB, Lee YM. Folate-conjugated methoxy poly(ethylene glycol)/poly(ɛ-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J Controlled Release. 2005;109:158-68.
[109] Simamora P, Alvarez JM, Yalkowsky SH. Solubilization of rapamycin. Int J Pharm. 2001;213:25-9.
[110] Yáñez J, Forrest M, Ohgami Y, Kwon G, Davies N. Pharmacometrics and delivery of novel nanoformulated PEG-b-poly(ε-caprolactone) micelles of rapamycin. Cancer Chemother Pharmacol. 2008;61:133-44.
[111] Konak C, Kopeckova P, Kopecek J. Photoregulated association of N-(2-hydroxypropyl)methacrylamide copolymers with azobenzene-containing side chains. Macromolecules. 1992;25:5451-6.
[112] Wang G, Tong X, Zhao Y. Preparation of Azobenzene-Containing Amphiphilic Diblock Copolymers for Light-Responsive Micellar Aggregates. Macromolecules. 2004;37:8911-7.
[113] Zhao Y, He J. Azobenzene-containing block copolymers: the interplay of light and morphology enables new functions. Soft Matter. 2009;5:2686-93.
[114] Wang Y, Hong C-Y, Pan C-Y. Spiropyran-Based Hyperbranched Star Copolymer: Synthesis, Phototropy, FRET, and Bioapplication. Biomacromolecules. 2012;13:2585-93.
[115] Chen J, Zeng F, Wu S, Zhao J, Chen Q, Tong Z. Reversible fluorescence modulation through energy transfer with ABC triblock copolymer micelles as scaffolds. Chem Commun. 2008:5580-2.
[116] Chatterjee DK, Fong LS, Zhang Y. Nanoparticles in photodynamic therapy: An emerging paradigm. Adv Drug Del Rev. 2008;60:1627-37.
[117] Jang W-D, Nishiyama N, Zhang G-D, Harada A, Jiang D-L, Kawauchi S, et al. Supramolecular Nanocarrier of Anionic Dendrimer Porphyrins with Cationic Block Copolymers Modified with Polyethylene Glycol to Enhance Intracellular Photodynamic Efficacy. Angew Chem. 2005;117:423-7.
[118] Wu D-Q, Li Z-Y, Li C, Fan J-J, Lu B, Chang C, et al. Porphyrin and Galactosyl Conjugated Micelles for Targeting Photodynamic Therapy. Pharm Res. 2010;27:187-99.
[119] Rapoport N, Pitt WG, Sun H, Nelson JL. Drug delivery in polymeric micelles: from in vitro to in vivo. J Controlled Release. 2003;91:85-95.
[120] Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors affecting acoustically triggered release of drugs from polymeric micelles. J Controlled Release. 2000;69:43-52.
[121] Marin A, Sun H, Husseini GA, Pitt WG, Christensen DA, Rapoport NY. Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J Controlled Release. 2002;84:39-47.
[122] Mohan P, Rapoport N. Doxorubicin as a Molecular Nanotheranostic Agent: Effect of Doxorubicin Encapsulation in Micelles or Nanoemulsions on the Ultrasound-Mediated Intracellular Delivery and Nuclear Trafficking. Mol Pharm. 2010;7:1959-73.
[123] Tung S, Jackson J, Burt H, Mu C. Drug uptake enhancement using sonodynamic effects at 4 MHz--a potential application for micro-ultrasonic-Transducers. Biomedical Engineering, IEEE Transactions on. 2007;54:1153-6.
[124] Jackson JK, Pirmoradi FN, Wan C-PL, Siu T, Chiao M, Burt HM. Increased accumulation of paclitaxel and doxorubicin in proliferating capillary cells and prostate cancer cells following ultrasound exposure. Ultrasonics. 2011;51:932-9.
[125] Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems. Nano Lett. 2006;6:2427-30.
[126] Khemtong C, Kessinger CW, Ren J, Bey EA, Yang S-G, Guthi JS, et al. In vivo Off-Resonance Saturation Magnetic Resonance Imaging of αvβ3-Targeted Superparamagnetic Nanoparticles. Cancer Res. 2009;69:1651-8.
[127] Wiradharma N, Zhang Y, Venkataraman S, Hedrick JL, Yang YY. Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today. 2009;4:302-17.
[128] Haag R, Kratz F. Polymer Therapeutics: Concepts and Applications. Angew Chem Int Ed. 2006;45:1198-215.
[129] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release. 2000;65:271-84.
[130] Pirollo KF, Chang EH. Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol. 2008;26:552-8.
[131] Jiang W, KimBetty YS, Rutka JT, ChanWarren CW. Nanoparticle-mediated cellular response is size-dependent. Nat Nano. 2008;3:145-50.
[132] Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nano. 2007;2:249-55.
[133] Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences. 2008;105:14265-70.
[134] Larsen EKU, Nielsen T, Wittenborn T, Birkedal H, Vorup-Jensen T, Jakobsen MH, et al. Size-Dependent Accumulation of PEGylated Silane-Coated Magnetic Iron Oxide Nanoparticles in Murine Tumors. ACS Nano. 2009;3:1947-51.
[135] Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW. Mediating Tumor Targeting Efficiency of Nanoparticles Through Design. Nano Lett. 2009;9:1909-15.
[136] Isojima T, Lattuada M, Vander Sande JB, Hatton TA. Reversible Clustering of pH- and Temperature-Responsive Janus Magnetic Nanoparticles. ACS Nano. 2008;2:1799-806.
[137] Takakura Y, Hashida M. Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Crit Rev Oncol/Hematol. 1995;18:207-31.
[138] van Nostrum CF, Veldhuis TFJ, Bos GW, Hennink WE. Tuning the Degradation Rate of Poly(2-hydroxypropyl methacrylamide)-graft-oligo(lactic acid) Stereocomplex Hydrogels. Macromolecules. 2004;37:2113-8.
[139] Moore JS, Stupp SI. Room temperature polyesterification. Macromolecules. 1990;23:65-70.
[140] Knol RJJ, de Bruin K, de Jong J, van Eck-Smit BLF, Booij J. In vitro and ex vivo storage phosphor imaging of short-living radioisotopes. J Neurosci Methods. 2008;168:341-57.
[141] Na K, Lee KH, Lee DH, Bae YH. Biodegradable thermo-sensitive nanoparticles from poly(l-lactic acid)/poly(ethylene glycol) alternating multi-block copolymer for potential anti-cancer drug carrier. Eur J Pharm Sci. 2006;27:115-22.
[142] Akiba I, Ohba Y, Akiyama S. Phase Structure in Blends of Poly(ethylene glycol) and Poly(styrene-co-methacrylic acid). Macromolecules. 1999;32:1175-9.
[143] Omelczuk MO, McGinity JW. The Influence of Polymer Glass Transition Temperature and Molecular Weight on Drug Release from Tablets Containing Poly(DL-lactic Acid). Pharm Res. 1992;9:26-32.
[144] Coffin M, McGinity J. Biodegradable Pseudolatexes: The Chemical Stability of Poly(D,L-Lactide) and Poly (ε-Caprolactone) Nanoparticles in Aqueous Media. Pharm Res. 1992;9:200-5.
[145] Rijcken CJF, Veldhuis TFJ, Ramzi A, Meeldijk JD, van Nostrum CF, Hennink WE. Novel Fast Degradable Thermosensitive Polymeric Micelles Based on PEG-block-poly(N-(2-hydroxyethyl)methacrylamide-oligolactates). Biomacromolecules. 2005;6:2343-51.
[146] de Jong SJ, Arias ER, Rijkers DTS, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus. Polymer. 2001;42:2795-802.
[147] Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon A. Nuclear Delivery of Doxorubicin via Folate-targeted Liposomes with Bypass of Multidrug-resistance Efflux Pump. Clin Cancer Res. 2000;6:1949-57.
[148] Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Res. 1995;55:3752-6.
[149] Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975;28:721-6.
[150] Abraham RT, Wiederrecht GJ. IMMUNOPHARMACOLOGY OF RAPAMYCIN1. Annu Rev Immunol. 1996;14:483-510.
[151] Sabatini DM. mTOR and cancer: insights into a complex relationship. Nature Reviews Cancer 2006;6:729-34.
[152] Marinov M, Fischer B, Arcaro A. Targeting mTOR signaling in lung cancer. Crit Rev Oncol/Hematol. 2007;63:172-82.
[153] Ji J, Zheng P-S. Activation of mTOR signaling pathway contributes to survival of cervical cancer cells. Gynecol Oncol. 2010;117:103-8.
[154] Gulhati P, Cai Q, Li J, Liu J, Rychahou PG, Qiu S, et al. Targeted Inhibition of Mammalian Target of Rapamycin Signaling Inhibits Tumorigenesis of Colorectal Cancer. Clin Cancer Res. 2009;15:7207-16.
[155] Noh W-C, Mondesire WH, Peng J, Jian W, Zhang H, Dong J, et al. Determinants of Rapamycin Sensitivity in Breast Cancer Cells. Clin Cancer Res. 2004;10:1013-23.
[156] Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005;5:886-97.
[157] Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069-75.
[158] Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov. 2006;5:671-88.
[159] Wanner K, Hipp S, Oelsner M, Ringshausen I, Bogner C, Peschel C, et al. Mammalian target of rapamycin inhibition induces cell cycle arrest in diffuse large B cell lymphoma (DLBCL) cells and sensitises DLBCL cells to rituximab. Br J Haematol. 2006;134:475-84.
[160] Raught B, Gingras A-C, Sonenberg N. The target of rapamycin (TOR) proteins. Proc Natl Acad Sci U S A. 2001;98:7037-44.
[161] Buck E, Eyzaguirre A, Brown E, Petti F, McCormack S, Haley JD, et al. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non–small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther. 2006;5:2676-84.
[162] Guba M, E. Koehl G, Neppl E, Doenecke A, Steinbauer M, J. Schlitt H, et al. Dosing of rapamycin is critical to achieve an optimal antiangiogenic effect against cancer. Transplant Int. 2005;18:89-94.
[163] Seeliger H, Guba M, Kleespies A, Jauch K-W, Bruns C. Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev. 2007;26:611-21.
[164] Napoli KL, Wang M-E, Stepkowski SM, Kahan BD. Distribution of sirolimus in rat tissue. Clin Biochem. 1997;30:135-42.
[165] Chen M-C, Tsai H-W, Liu C-T, Peng S-F, Lai W-Y, Chen S-J, et al. A nanoscale drug-entrapment strategy for hydrogel-based systems for the delivery of poorly soluble drugs. Biomaterials. 2009;30:2102-11.
[166] Yuan X-B, Yuan Y-B, Jiang W, Liu J, Tian E-J, Shun H-M, et al. Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm. 2008;349:241-8.
[167] Lu W, Li F, Mahato RI. Poly(ethylene glycol)-block-poly(2-methyl-2-benzoxycarbonyl-propylene carbonate) micelles for rapamycin delivery: In vitro characterization and biodistribution. J Pharm Sci. 2011;100:2418-29.
[168] Bisht S, Feldmann G, Koorstra J-BM, Mullendore M, Alvarez H, Karikari C, et al. In vivo characterization of a polymeric nanoparticle platform with potential oral drug delivery capabilities. Mol Cancer Ther. 2008;7:3878-88.
[169] Parhi P, Mohanty C, Sahoo SK. Enhanced cellular uptake and in vivo pharmacokinetics of rapamycin-loaded cubic phase nanoparticles for cancer therapy. Acta Biomater. 2011;7:3656-69.
[170] Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Controlled Release. 2008;132:164-70.
[171] Nativo P, Prior IA, Brust M. Uptake and Intracellular Fate of Surface-Modified Gold Nanoparticles. ACS Nano. 2008;2:1639-44.
[172] Pelkmans L, Bürli T, Zerial M, Helenius A. Caveolin-Stabilized Membrane Domains as Multifunctional Transport and Sorting Devices in Endocytic Membrane Traffic. Cell. 2004;118:767-80.
[173] Venn AA, Tambutté E, Lotto S, Zoccola D, Allemand D, Tambutté S. Imaging intracellular pH in a reef coral and symbiotic anemone. Proceedings of the National Academy of Sciences. 2009;106:16574-9.
[174] Färber K, Schumann B, Miersch O, Roos W. Selective desensitization of jasmonate- and pH-dependent signaling in the induction of benzophenanthridine biosynthesis in cells of Eschscholzia californica. Phytochemistry. 2003;62:491-500.
[175] Kim JH, Johannes L, Goud B, Antony C, Lingwood CA, Daneman R, et al. Noninvasive measurement of the pH of the endoplasmic reticulum at rest and during calcium release. Proceedings of the National Academy of Sciences. 1998;95:2997-3002.
[176] Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, et al. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proceedings of the National Academy of Sciences. 2002;99:9996-10001.
[177] Pichon C, Gonçalves C, Midoux P. Histidine-rich peptides and polymers for nucleic acids delivery. Adv Drug Del Rev. 2001;53:75-94.
[178] Park J, Kurosawa S, Watanabe J, Ishihara K. Evaluation of 2-Methacryloyloxyethyl Phosphorylcholine Polymeric Nanoparticle for Immunoassay of C-Reactive Protein Detection. Anal Chem. 2004;76:2649-55.
[179] Weiner ID, Hamm LL. Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. American Journal of Physiology - Renal Physiology. 1989;256:F957-F64.
[180] Buckler KJ, Vaughan-Jones RD. Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells. Pflügers Archiv European Journal of Physiology. 1990;417:234-9.
[181] Halamoda Kenzaoui B, Chapuis Bernasconi C, Guney-Ayra S, Juillerat-Jeanneret L. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J. 2012;441:813-21.
[182] Yoo HS, Park TG. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA–PEG block copolymer. J Controlled Release. 2001;70:63-70.
[183] Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials. 2002;23:1553-61.
[184] Di L, Kerns EH, Carter GT. Drug-like property concepts in pharmaceutical design. Curr Pharm Design. 2009;15:2184-94.
[185] O’Donnell KP, Williams RO. Optimizing the Formulation of Poorly Water-Soluble Drugs
Formulating Poorly Water Soluble Drugs. In: Williams Iii ROO, Watts ABB, Miller DAA, editors.: Springer New York; 2012. p. 27-93.
[186] Witschi C, Doelker E. Residual solvents in pharmaceutical products: acceptable limits, influences on physicochemical properties, analytical methods and documented values. Eur J Pharm Biopharm. 1997;43:215-42.
[187] Shepherd G. Hypersensitivity reactions to chemotherapeutic drugs. Clin Rev Allergy Immunol. 2003;24:253-62.
[188] Hennenfent KL, Govindan R. Novel formulations of taxanes: a review. Old wine in a new bottle? Ann Oncol. 2006;17:735-49.
[189] Vignot S, Faivre S, Aguirre D, Raymond E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol. 2005;16:525-37.
[190] Odom AL, Hatwig CA, Stanley JS, Benson AM. Biochemical determinants of adriamycin® toxicity in mouse liver, heart and intestine. Biochem Pharmacol. 1992;43:831-6.
[191] Gottesman MM. MECHANISMS OF CANCER DRUG RESISTANCE. Annu Rev Med. 2002;53:615-27.
[192] Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Del Rev. 2009;61:768-84.
[193] Kong G, Braun RD, Dewhirst MW. Hyperthermia Enables Tumor-specific Nanoparticle Delivery: Effect of Particle Size. Cancer Res. 2000;60:4440-5.
[194] Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer: Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 2000;11:265-83.
[195] Lin JH. Dose-dependent pharmacokinetics: Experimental observations and theoretical considerations. Biopharm Drug Disposition. 1994;15:1-31.
[196] Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Del Rev. 1995;16:295-309.
[197] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Del Rev. 2001;47:113-31.
[198] Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: Synthesis, characterisation and in vivo studies. Biomaterials. 2007;28:5581-93.
[199] Harada A, Kataoka K. Chain Length Recognition: Core-Shell Supramolecular Assembly from Oppositely Charged Block Copolymers. Science. 1999;283:65-7.
[200] Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J Controlled Release. 2005;109:169-88.
[201] Yan J, Ye Z, Chen M, Liu Z, Xiao Y, Zhang Y, et al. Fine Tuning Micellar Core-Forming Block of Poly(ethylene glycol)-block-poly(ε-caprolactone) Amphiphilic Copolymers Based on Chemical Modification for the Solubilization and Delivery of Doxorubicin. Biomacromolecules. 2011;12:2562-72.
[202] Ebrahim Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PLR, Hammond PT, et al. Mixed micelles self-assembled from block copolymers for drug delivery. Current Opinion in Colloid & Interface Science. 2011;16:182-94.
[203] Yang C, Tan JPK, Cheng W, Attia ABE, Ting CTY, Nelson A, et al. Supramolecular nanostructures designed for high cargo loading capacity and kinetic stability. Nano Today. 2010;5:515-23.
[204] Kang N, Perron M-E, Prud'homme RE, Zhang Y, Gaucher G, Leroux J-C. Stereocomplex Block Copolymer Micelles: Core−Shell Nanostructures with Enhanced Stability. Nano Lett. 2005;5:315-9.
[205] Park J-S, Akiyama Y, Yamasaki Y, Kataoka K. Preparation and Characterization of Polyion Complex Micelles with a Novel Thermosensitive Poly(2-isopropyl-2-oxazoline) Shell via the Complexation of Oppositely Charged Block Ionomers†. Langmuir. 2006;23:138-46.
[206] Kopecek J, Kopecková P, Minko T, Lu ZR, Peterson CM. Water soluble polymers in tumor targeted delivery. J Controlled Release. 2001;74:147-58.
[207] Kopeček J, Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv Drug Del Rev. 2010;62:122-49.
[208] Pike DB, Ghandehari H. HPMA copolymer-cyclic RGD conjugates for tumor targeting. Adv Drug Del Rev. 2010;62:167-83.
[209] Zhou Y, Yang J, Kopeček J. Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials. 2012;33:1863-72.
[210] Seymour LW, Duncan R, Strohalm J, Kopeček J. Effect of molecular weight (Mw) of N-(2-hydroxypropyl)methacrylamide copolymers on body distribution and rate of excretion after subcutaneous, intraperitoneal, and intravenous administration to rats. J Biomed Mater Res. 1987;21:1341-58.
[211] Seymour LW, Miyamoto Y, Maeda H, Brereton M, Strohalm J, Ulbrich K, et al. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur J Cancer. 1995;31:766-70.
[212] Dvorák M, Kopecková P, Kopecek J. High-molecular weight HPMA copolymer-adriamycin conjugates. J Controlled Release. 1999;60:321-32.
[213] Šprincl L, Exner J, Štěrba O, Kopeček J. New types of synthetic infusion solutions. III. Elimination and retention of poly-[N-(2-hydroxypropyl)methacrylamide] in a test organism. J Biomed Mater Res. 1976;10:953-63.
[214] Lee ES, Gao Z, Kim D, Park K, Kwon IC, Bae YH. Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J Controlled Release. 2008;129:228-36.
[215] Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, et al. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32:3435-46.
[216] Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. Influence of serum and albumins from different species on stability of camptothecin-loaded micelles. J Controlled Release. 2005;104:313-21.
[217] Moghimi SM, Hunter AC, Murray JC. Long-Circulating and Target-Specific Nanoparticles: Theory to Practice. Pharmacol Rev. 2001;53:283-318.
[218] Bertram JS, Janik P. Establishment of a cloned line of Lewis lung carcinoma cells adapted to cell culture. Cancer Lett. 1980;11:63-73.