研究生: |
蔡大維 Tsai, Da-Wei |
---|---|
論文名稱: |
應用矽光子於毫米波相位調整與光載毫米波天線模組封裝 Application of Si Photonics for mmWave Phase Tuning and Package of mmWave-over-Fiber Antenna Module |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
劉怡君
林銘偉 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 矽光子 、毫米波 、天線模組封裝 、第五代無線通訊 |
外文關鍵詞: | silicon photonics, mmWave, antenna package, 5G communication |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文致力於中心頻率為28GHz 之光載毫米波天線模組開發,
主要研究項目為矽光子晶片開發與異質晶片整合及封裝。
我們利用光學真實時間延遲線,串接不同長度波導並分為四通道,
可藉由光學切換器分別調整各通道光訊號傳輸距離,造成時間延遲來
改變毫米波訊號相位,達成陣列天線波束掃描(Beam steering)功能。
實際元件量測結果中,藉由調整光學切換器電壓,每一光通道分別可
得十六種不同相位變化,其中最長路徑與最短路徑相位差異為350
度。
將光載毫米波天線模組化最後的重要環節為封裝,我們設計印刷
電路板,模擬其中毫米波訊號傳輸線,以及針對晶片與電路板連接鎊
線設計阻抗匹配電路,使訊號傳輸損耗降低。將晶片封裝在電路板後,
經由傳輸16QAM OFDM 訊號並解調星座圖換算誤差向量幅度(Error
vector magnitude, EVM) 進行系統驗證,在發送端(TX)無線傳輸EVM
為10%,接收端(RX)則為13%,成功在同一天線模組中實現收與發
功能。
In this thesis, we are devoted to the development of 28-GHz
mmWave-over-fiber antenna module. The research is focus on silicon
photonic chip design and heterogeneous integration of si photonics and
CMOS circuits.
We design optical true time delay line to genrate optical delay. The
method is series connect different length of waveguide and divide the
optical signal into 4 channel. We put optical switches between each
length of waveguide in order to adjust the optical signal trasmission
length and generate the phase difference of mmWave signal. It can
achieve the antenna module function of beam steering. The measurement
result shows that the optical delay line can generate 16 different phase
difference. Besides, We measured out a phase shift of 350 degree between
the longest length and the shortest length of the route.
Packaging is the last important part of the development of
mmWave-over-fiber antenna module. For the design of PCB(printed
circuit board), the transmission line of mmWave signal as well as the
impedance matching circuit designed for wire bonding are the main
points to simulate in order to reduce the transmission loss. After
packaging the chip on the PCB, we verifyed the system by transmit
16-QAM OFDM(orthogonal frequency-division multiplexing) signal. The
method of system evaluation is to demodulated constellation diagram to
convert the EVM(error vector magnitude). Experimental results show that
the EVM is 10% in the wireless transmission of TX and the EVM is 13%
in the wireless transmission of RX. We successfully achieve the antenna
module with the function of transmitter and receiver.
[1] G. Brown, "White Paper: Exploring 5G New Radio: Use Cases, Capabilities & Timeline," Heavy Reading on behalf of Qualcomm, 2016.
[2] D. Choudhury, "5G wireless and millimeter wave technology evolution: An overview," in 2015 IEEE MTT-S International Microwave Symposium, 2015: IEEE, pp. 1-4.
[3] P. T. Dat, A. Kanno, and T. Kawanishi, "Radio-on-radio-over-fiber: efficient fronthauling for small cells and moving cells," IEEE Wireless Communications, vol. 22, no. 5, pp. 67-75, 2015.
[4] V. A. Thomas, M. El-Hajjar, and L. Hanzo, "Performance improvement and cost reduction techniques for radio over fiber communications," IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 627-670, 2015.
[5] V. Jungnickel et al., "The role of small cells, coordinated multipoint, and massive MIMO in 5G," IEEE communications magazine, vol. 52, no. 5, pp. 44-51, 2014.
[6] "Hyper-dense Small Cell Deployment Trial in Nascar Environment."
[7] M. Longbrake, "True time-delay beamsteering for radar," in 2012 IEEE National Aerospace and Electronics Conference (NAECON), 2012: IEEE, pp. 246-249.
[8] J. Xie, L. Zhou, Z. Li, J. Wang, and J. Chen, "Seven-bit reconfigurable optical true time delay line based on silicon integration," Opt. Express, vol. 22, no. 19, pp. 22707-22715, 2014/09/22 2014, doi: 10.1364/OE.22.022707.
[9] X. Wang et al., "Continuously tunable ultra-thin silicon waveguide optical delay line," Optica, vol. 4, no. 5, pp. 507-515, 2017/05/20 2017, doi: 10.1364/OPTICA.4.000507.
[10] R. Bonjour et al., "Ultra-fast millimeter wave beam steering," IEEE journal of quantum electronics, vol. 52, no. 1, pp. 1-8, 2015.
[11] M. S. Rasras et al., "Integrated resonance-enhanced variable optical delay lines," IEEE photonics technology letters, vol. 17, no. 4, pp. 834-836, 2005.
[12] J. H. Lau, "Recent advances and new trends in flip chip technology," Journal of Electronic Packaging, vol. 138, no. 3, p. 030802, 2016.