簡易檢索 / 詳目顯示

研究生: 吳俊毅
Wu, Chun-I
論文名稱: 應用共振軟X光散射研究罕德金屬YMn6Sn6
RIXS studies on the Hund's metal YMn6Sn6
指導教授: 黃迪靖
Huang, Di-Jing
口試委員: 杜昭宏
Du, Chao-Hung
蘇雲良
SOO, Yun-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 57
中文關鍵詞: 共振非彈性散射罕德金屬類螢光激發類拉曼激發
外文關鍵詞: Hund's metal, fluorescence-like excitation, Raman-like excitation, YMn6Sn6
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多過度金屬材料中,電子強關聯性扮演重要的角色。由於顯著的庫倫斥力和能帶寬度的縮減,電子變得局域化,導致材料表現出莫特(Mott)絕緣特性。然而,在多軌道材料中,原子內電子自旋的“交換作用”可以有效地降低庫倫排斥能,從而出現一種獨特類型的金屬,稱為罕得金屬。在本論文中,我們首先介紹在研究中所使用的實驗技術,包括X光繞射、吸收和共振非彈性軟X光散射(RIXS)。我們討論YMn6Sn6的X光吸收能譜 (XAS) 中的自我吸收效應,並使用“多重計算(multiplet calculations)”來解釋軟X光光譜。我們使用跨越 Mn L3 邊緣的各種入射光子能量對YMn6Sn6進行 RIXS 量測;獲得的數據揭示了兩種不同的RIXS能譜特徵:類螢光和類拉曼 RIXS 特徵。類螢光特徵反映了穿過費米能階的 3d 能帶間的躍遷,而類拉曼特徵源自 Mn 的d電子和d電子激發。此雙重 RIXS 特性與亞錳酸鹽金屬行為的雙交換模型相似。此外,我們預計自能的理論計算將能解釋三個 Mn 3d 能帶是金屬性的,而另外兩個是絕緣的。這些結果證實 YMn6Sn6 是具有軌道選擇性的罕德金屬。


    The strong electronic correlations play an important role in many transition-metal oxides. Due to the significant Coulomb repulsion and reduced bandwidth, electrons become localized, resulting in the material exhibiting Mott insulating properties. However, in multiorbital materials, the intra-atomic exchange interaction of spins can effectively reduce the repulsive Coulomb energy, leading to the emergence of a distinct type of metal known as Hund’s metal. In this thesis, we first introduce the experimental techniques used in the studies, including X-ray diffraction, absorption, and resonant inelastic soft X-ray scattering (RIXS). We studied the self-absorption effect in X-ray absorption spectroscopy (XAS) of YMn6Sn6 and used multiplet calculations to explain the spectra. We performed RIXS measurements on YMn6Sn6 using various incident photon energies across the Mn L3 edge; the obtained data revealed two distinct RIXS spectral signatures: fluorescence-like and Raman-like RIXS features. The fluorescence-like signature reflects the transitions of the 3d bands crossing the Fermi level, while the Raman-like signature originates from Mn dd excitations. Our observation of dual RIXS characteristics is analogous to the double-exchange model that explains the metallic behavior of manganites. Additionally, we anticipate that theoretical calculations of self-energy will show that three of the Mn 3d bands are metallic, while the other two are insulating-like. These results provide spectral evidence for the existence of orbital-selective Hund’s metal in YMn6Sn6.

    Chapter 1 Introduction…………………………………………………….. ..1 1.1 Mott insulator…………………………. ………………………………..1 1.2 Hubbard model…………………………. …………………………..…..3 1.3 Hund’s metal…………………………. …………………………………5 Chapter 2 Experimental Techniques: X-ray Diffraction, Absorption, and RIXS……………………………………………………………………….…...8 2.1 Laue diffraction………………………………………………………...8 2.1.1 Back reflection of Laue……………………………………....…11 2.2 Soft X-ray absorption spectroscopy……………………….………….13 2.21 X-ray fluorescence & Auger electrons…………………………..15 2.2.2 TEY & TFY…………………………….……………..………...16 2.3 Soft X-ray RIXS…………………………….……………………..…..17 2.4 Beamline Techniques……………………….……………..…………...19 Chapter 3 XAS & RIXS of Kagome Metal YMn6Sn6……….……………..21 3.1 Introduction to YMn6Sn6……………………………………………….21 3.2 XAS of YMn6Sn6……………………………………………………….25 3.2.1 Self-absorption…………………………………………………..27 3.2.2 XAS by Multiplet and Quanty calculations……………………..29 3.3 RIXS of YMn6Sn6……………………………………………………...37 3.3.1 dd excitations…………………………………………………....39 3.3.2 Electron-hole pair excitations…………………………………...45 3.4 Discussion……………………………………………………………...48 Chapter 4 Conclusion and future work……………………………………53 Reference…………………………………………………………………….54

    [1] Urushibara, A. et al., Phys. Rev. B 51, 14103–14109 (1995).
    [2] Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. & Chu, C. W., Phys. Rev. Lett. 58, 908. (1987)
    [3] Armitage, N., et al., Phs. Rev. Lett. 88 (25), 257001. (2002).
    [4] Imada, M, A. Fujimori, and Y. Tokura, Phys. Rev. Mod. 70, 1039. (1998)
    [5] Mott, N. F., Proceedings of the Physical Society. Series A. 62 (7): 416–422. (1949)
    [6] A. Klyachko, “The Pauli exclusion principle and beyond,” arXiv:0904.2009 (2009).
    [7] Khomskii, D., Basic Aspects of the Quantum Theory of Solids: Order and Elementary Excitations (Cambridge University Press, New York). (2010)
    [8] W. Roth, Phys. Rev. 110, 1333. (1958)
    [9] Lanatà, N.; Strand, H.U.R.; Giovannetti, G.; Hellsing, B.; de’ Medici, L.; Capone, M., Phys. Rev. B 87, 045122. (2013).
    [10] Yin, Z. P., Haule, K. & Kotliar, G., Nat. Mater. 10, 932 (2011).
    [11] Hund, F., Z. Phys. 33, 345–371 (1925)
    [12] Yu, R. & Si, Q., Phys. Rev. Lett. 110, 146402 (2013).
    [13] K.M. Stadler, G. Kotliar, A. Weichselbaum, and J. von Delft, Annals of Physics 405, 365 – 409 (2019).
    [14] Georges, A., L. d. Medici, and J. Mravlje, Annual Review of Condensed Matter Physics. 4 (1), 137 (2013)
    [15] Bunaciu, A.A.; Udriştioiu, E.G.; Aboul-Enein, H.Y., Crit. Rev. Anal. Chem. 45, 289–299 (2015).
    [16] F.J. Himpsel, Phys. Status Solidi B 248 292 (2011).
    [17] Sakurai J J. Advanced Quantum Mechanics, Addison-Wesley, London, UK. (1967).
    [18] Bambynek W., Crasemann B., Fink R. W., Freund H. U., Mark H., Swift C. D., Price R. E., and Rao P. V., Rev. Mod. Phys. 44, 716–813 (1972).
    [19] Achkar, A., Regier, T., Wadati, H., Kim, Y.-J., Zhang, H., Hawthorn, D., Phys. Rev. B, Condens. Matter Mater. Phys. 83, 081106 (2011).
    [20] Luuk J. P. Ament, Michel van Veenendaal, Thomas P. Devereaux, John P. Hill, and Jeroen van den Brink, Rev. Mod. Phys. 83, 705 (2011).
    [21] F.M.de Groot, Phys. Rev. B, Condensed matter. 53(11), 7099-7110. (1996).
    [22] J. van den Brink and M. van Veenendaal, J, Phys. Chem. Solids. 66, 2145 (2005).
    [23] J. Van den Brink and M. Van Veenendaal, Europhys. Lett. 73, 121 (2006).
    [24] C. Lai et al., J. Synchrotron Radiat. 21, 325 (2014).
    [25] Singh, A. et al., J. Synchrotron Radiat. 28, 977–986 (2021).
    [26] Yin, JX., Ma, W., Cochran, T.A. et al., Nature. 583, 533–536 (2020).
    [27] N. J. Ghimire, R. L. Dally, L. Poudel, D. C. Jones, D. Michel, N. T. Magar, M. Bleuel, M. A. McGuire, J. S. Jiang, J. F. Mitchell, J. W. Lynn, and I. I. Mazin, Sci. Adv. 6, 51 (2020).
    [28] Q. Wang, Q. Yin, S. Fujita, H. Hosono, H. Lei, ArXiv:1906.07986v1, (2019).
    [29] K. Uhlíová, F. R. deoer, V. Sechovský, G. Venturini, in WDS’06 Proceedings of Contributed Papers Part III, pp. 48–53. (2006).
    [30] Wang, Q. et al., Phys. Rev. B 103, 014416 (2021).
    [31] R. L. Dally, J. W. Lynn, N. J. Ghimire, D. Michel, P. Siegfried, and I. I. Mazin, Phys. Rev. B 103, 094413 (2021).
    [32] Li, M. et al., Nat. Commun. 12, 3129 (2021).
    [33] Luca de’ Medici, Jernej Mravlje, and Antoine Georges, Phys. Rev. Lett. 107, 256401 (2011).
    [34] Georges, A., de’ Medici, L. & Mravlje, J., Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).
    [35] Eisebitt, S.; Böske, T.; Rubensson, J.-E.; Eberhardt, W., Phys. Rev. B: Condens. Matter Mater. Phys. 47, 14103. (1993).
    [36] de Groot F., Coord. Chem. Rev. 249, 31–63 (2005).
    [37] Slater, J. C., Phys. Rev. 34 10 (1929).
    [38] H Y Huang, Published doctoral dissertation, Department of Program for Science and Technology of Synchrotron Light Source, NTHU, Taiwan (2016).
    [39] Glawion S, Haverkort M W et al., J. Phys.: Condens. Matter. 24 255602 (2012).
    [40] Haverkort, M. W., Journal of Physics: Conference Series. 712, 012001. (2016).
    [41] Ghiringhelli, G. et al., Phys. Rev. B 73, 035111 (2006).
    [42] Gilmore et al., Phys. Rev. X 11, 031013 (2021).
    [43] Sugano, S.; Tanabe, Y.; Kamimura, H., Academic Press: New York, (1970).
    [44] J. S. Lee, M. W. Kim, and T. W. Noth, New J. Phys. 7 147 (2005).
    [45] D. Benjamin, I. Klich, and E. Demler, Phys. Rev. Lett. 112, 247002 (2014).
    [46] S. G. Ovchinnikov, JETP 134, 140 (2008).
    [47] C. A. Perroniet et al., Phys. Rev. B 71,113107 (2005).
    [48] J.-H. Park, S-W. Cheong, and C. T. Chen, Phys. Rev. B 55, 11072 (1997).
    [49] J.-H. Park et al., Phys. Rev. Lett. 76, 4215–4218 (1996).
    [50] K. Horiba, M. Taguchi, A. Chainani et al., Phys. Rev. Lett. 93, 236401 (2004).
    [51] G. Ghiringhelli et al., Phys. Rev. Lett. 92, 117406 (2004).
    [52] Ghiringhelli, G., et al. Eur. Phys. J. Spec. Top. 169, 199–205 (2009).

    QR CODE