簡易檢索 / 詳目顯示

研究生: 紀佩吟
Pei Yin Chi
論文名稱: 以電子束方式圖案化去氧核醣核酸分子
DNA Patterning by e-beam lithography
指導教授: 劉承賢
陳啟東
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 72
中文關鍵詞: 去氧核糖核酸電子束奈米圖形奈米技術
外文關鍵詞: DNA, electron beam, nanopatterning, nanotechnology
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 去氧核糖核酸分子(DNA)攜帶著遺傳密碼,在自然界裡在生命體上扮演著重要的角色。不僅僅如此,由於其雙股螺旋的半徑約為2奈米,單股與單股去氧核糖核酸分子間的鹼基具有專一性的配對也比其他的生物分子,使去氧核糖核酸成為重要的奈米材料,且由於生物技術的發達使我們可以任意的設計去氧核糖核酸分子的序列,使得近年來去氧核糖核酸分子在奈米科技上的應用非常廣。例如:利用去氧核糖核酸分子為骨幹再利用金屬氧化還原的反應做成的奈米導線;以去氧核糖核酸分子當作連接連接器連接奈米金顆粒。
    在過去的雖然有各式各樣的奈米元件產生,但是如何讓奈米元件在特定的位置上呈現,仍為奈米科技發展的一個重要的挑戰。所以在過去的幾年間,有一些方法被提出來解決控制奈米的結構在特定的位置生成,但不可避免的,大部分的方式仍有相當的限制性或是缺點。因此在本篇論文中我們主要利用電子顯微束的方式使去氧核糖核酸分子排列在特定的位置並且產生圖形。
    我們在此提出了兩種利用電子顯微術來定位去氧核糖核酸分子的方法。 第一,利用再經由電子槍發射出來的電子束直接破壞在與金表面鍵結上的去氧核糖核酸分子 。第二,利用電子束在玻璃表面所產生的靜電力來吸引去氧核糖核酸分子。利用電子束的方式來圖案化可以精準的控制生物分子的位置,也可以產生各式各樣的圖形,穩定度高。這對於後續整合半導體生產技術與以去氧核糖核酸為主的米生物元件的發展有相當的應用。


    DNA carries genetic information, and is a very important material for lives. DNA is nano-size in nature and, more importantly, its specific base paring mechanism makes DNA a fascinating material in nanoscience. Moreover, due to the mature programmable synthesis skill of DNA, taking DNA as a constructing material has attracted great interest in recent years, such as DNA-based nanowires, programmed assembly of DNA-conjugated gold nanoparticles. Although, various nanodevices have been presented by previous researches, fabricating well localized nano structure at the desired places is still a great challenge. In order to solve the problem of precise positioning, numbers of DNA-patterning methods have been proposed. However, most proposed methods still have some limitations and disadvantages.
    In our research, we aim at the developing an electron beam patterning method to generate DNA patterns at desired location. Two E-beam based approaches are proposed to produce precise DNA patterns in this thesis. First, we directly generate DNA patterns on gold substrate by the deformation of DNA via electron beam bombardment. Second, we pattern DNA on electrified patterns of glass substrate by electron beam induced charges. By using these two techniques, we can simply and precisely locate DNA and on the surface and generate variety of DNA patterns with high stability. This is a step towards possible integration of DNA-based techniques use into regular semiconductor fabrication methods.

    1.INTRODUCTION 1 1.1 Background and Notivation 1 1.2 The Basics of DNA 2 1.3 Review of DNA Patterning Methods 6 1.3.1 Photolithography Method 6 1.3.2 Meniscus Receding Method 8 1.3.3 Dielectrophoresis Method 10 1.3.4 Dip-Pen Method 11 2. MATERIALS AND Methods 15 2.1 Substrate Fabrication 15 2.1.1 Wafer Cleaning 15 2.1.2 Optical Lithography 16 2.1.3 Thermal Evaporation 22 2.1.4 Lift Off 23 2.2 Procedure of DNA Patterning by Electron Eeam Bombardment 24 2.2.1 DNA Samples 24 2.2.2 Protein Samples 25 2.2.3 Procedures 25 2.2.4 Fluorescence Inspections 27 2.2.5 Electron Beam Inspections 27 2.3 Procedure of DNA Patterning Through Electron Beam Induced Charge Trapping 27 2.3.1 DNA Samples 27 2.3.2 Procedures 28 2.3.3 Staining DNA with Uranyl Acetate 30 2.4 Synthesis of Gold Nanoparticle 31 2.5 Gold and sulphur interaction 34 2.6 Streptavidin and Biotin System 35 3. EXPERIMENT RESULT 40 3.1DNA Patterning by Electron Eeam bombardment 40 3.1.1 DNA Patterns Shown on Gold Surface 40 3.1.2 Patterning DNA on SiO2 surface 50 3.2 Experimental result of DNA patterning through charge trapping method 55 3.2.1 FAM-20T DNA patterns 55 3.2.2 □l-phage DNA pattern 58 3.2.3 Toward DNA nano patterning 60 4. CONCLUSION 67

    [1] J. J. Storhoff, and C. A. Mirkin, Programmed materials synthesis with DNA, Chem. Rev., 99 (1999) 1849-1862.
    [2] T. Lindahl, Instability and decay of the primary structure of DNA, Nature, 362 (1993) 709-715.
    [3] M. Hegner and W. Grange, Mechanics and imaging of single DNA molecules, J. Muscle. Res. Cell. Motil., 23 (2002) 367-375.
    [4] C. A. Mirkin, R. L. Lestinger, R. C. Mucic, and J. J, Storhoff, A DNA based method for rationally assembling nanoparticles into macroscopic materials, Nature, 382 (1996) 607-609.
    [5] J. D. Le, Y. Pinto, N. C. Seeman, K. Musier-Forsyth, T. A. Taton and R. A. Kiehl, DNA-templated self-assembly of metallic nanocomponent arrays on a surface, Nano Lett., 4 (2004) 2343-2347.
    [6] H. Li, S. H. Park, J. H. Reif , T. H. LaBean and H. Yan, DNA-templated self-assembly of protein and nanoparticle linear arrays, J. Am. Chem. Soc., 126 (2004) 418-419.
    [7] N. C. Seeman, Nucleic acid junctions and lattices, J. Theor. Biol., 99 (1982) 237-247.
    [8] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design and self-assembly of two-dimensional DNA crystals, Nature, 394 (1998) 539-544.
    [9] C. Mao, W. Sun, and N. C. Seeman, Assembly of brromean rings from DNA, Nature, 386 (1997) 137-138.
    [10]http://oak.cats.ohiou.edu/~ballardh/pbio475/Heredity/DNA-double-helix.JPG
    [11]C. K. Mathews, K. E. Van Holde, K. G. Ahern, Biochemistry 3rd, ed. B, Roberts, L. Weber, J. Marsh, J. Schmidt, M. Prescott. 85-95, Addison Wesley Longman, Inc. (1999).
    [12] S. Pathak, and P. M. Dentinger, Microlithographic patterning of oligonucleotides: toward fabrication of multilevel DNA based devices, Langmuir, 19 (2003) 1948-1950.
    [13] A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot and D. Bensimon, Alignment and sensitive detection of DNA by a moving interface, Science, 265 (1994) 2096-2098.
    [14] G. Maubach, and W. Fritzsche, Precise positioning of individual DNA structures in electrode gaps by self-organization onto guiding microstructures, Nano Lett., 4 (2004) 4607-4611.
    [15] H. A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge, U.K.: Cambridge Univ.Press, (1978).
    [16] T. Yamamoto, O. Kurosawa, H, Kabata, N. Shimamoto, and M. Washizu , Molecular surgery of DNA based on electrostatic micromanipulation, IEEE Trans., 36 (2000) 1010-1016.
    [17] http://www.chem.northwestern.edu/~mkngrp/dpn.htm
    [18] L. M. Demers, D. S. Ginger, S.-J. Park, Z. Li, S. W. Chung, and C. A. Mirkin, Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography, Science, 296 (2002) 1836-1838.
    [19] C. M. Halliwell, and A. E. G. Cass, A factorial analysis of silanization conditions for the immobilization of oligonucleotides on class surfaces. Ana. Chem., 73 (2001) 2476-2483.
    [20] http://www.eng.yale.edu/rslab/resources/S1800seriesDataSheet.pdf
    [21] I. D. Drynov, A. I. Poletaev, I.G. Kharitonenkov, S.M. Klimenko, The interaction of uranyl acetate with DNA, Mol Biol. 1, 27-33(1974).
    [22] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials, Nature, 382 (1996) 607-609.
    [23] K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan, Preparation and Characterization of Au Colloid Monolayers, Anal. Chem., 67 (1995), 735-743.
    [24] L. H. Dubois and R. G. Nuzzo, Synthesis, structure, and properties of model organic surfaces, Annu. Rev. Phys. Chem., 43 (1992) 437-463.
    [25] T. M. Herne and M. J. Tarlov, Characterization of DNA probes immobilized on gold surfaces, J. Am. Chem. Soc. 119 (1997), 3401-3402.
    [26] M. Yang, H. C. M. Yau, and H. L. Chan, Adsorption kinetics and ligand-binding
    properties of thiol-modified double-strand DNA on a gold surface, Langmuir, 14 (1998), 6121-6129.
    [27] C. D. Bain and G. M. Whitesides, Agnew. Chem. Int. Ed. Engl. 28, 506 (1989); C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold, J. Am. Chem. Soc. 111 (1989) 321-335.
    [28] J. J. Hickman, P. E. Laibinis, D. I. Auerbach, C. Zou, T. J. Gardner, G. M. Whitesides, and M. S. Wrighton, Toward orthogonal self-assembly of redox active molecules on platinum and gold: selective reaction of disulfide with gold and isocyanide with platinum, Langmuir, 8 (1992) 357-359.
    [29]http://www.chemistry.adelaide.edu.au/projects/gfm-5-03.pdf
    [30] M. T. James, Molecular electronics, River Edge, NJ, World Scientific Singapore, Singapore University Press (2003).

    [31] J. Chen, J. B. Anderson, C. DeWeese-Scott, N. D. Fedorova, L. Y. Geer, S. He, D. I. Hurwitz , J. D. Jackson, A. R. Jacobs, C. J. Lanczycki, C. A. Liebert, C. Liu, T. Madej, A. Marchler-Bauer, G. H. Marchler, R. Mazumder, A. N. Nikolskaya, B. S. Rao, A. R. Panchenko, B. A. Shoemaker, V. Simonyan, J. S. Song, P. A. Thiessen, S. Vasudevan, Y. Wang, R. A. Yamashita, J. J. Yin, S. H. Bryant, MMDB: Entrez's 3D-structure database, Nucleic Acids Res. 31 (2003) 474-477.
    [32] http://www.ncbi.nlm.nih.gov
    [33] http://www.steve.gb.com/images/molecules/cofactors/biotin.png

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE