簡易檢索 / 詳目顯示

研究生: 蔡孟儒
Tsai, Meng-Ju
論文名稱: 利用ATLAS偵測器探討由向量玻色子融合產生希格斯玻色子之W玻色子對衰變與其WW背景估計
Estimation of the WW background in the Vector Boson Fusion H→WW* Analysis with the ATLAS Detector
指導教授: 徐百嫻
Hsu, Pai-hsien
口試委員: 張敬民
Cheung, Kingman
張維甫
Chang, We-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 45
中文關鍵詞: 大強子對撞機高能實驗希格斯玻色子粒子物理
外文關鍵詞: CERN, Higgs, Experimental High Energy Physics
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此論文探討由大強子對撞機以13 TeV能量強度的兩個質子束對撞所產生之數據並藉由ATLAS偵測器所收集,我們研究由向量玻色子融合產生希格斯玻色子之W玻色子對衰變與其WW背景估計。本論文主要提出以mT2來估計WW背景,我們也將詳述實驗結果及未來展望。


    We present the analysis strategy for the measurement of the vector boson fusion (VBF) Higgs boson decaying to a pair of W bosons, with 36.1 fb^-1 of proton-proton collisions at center-of-mass energy of 13 TeV collected by the ATLAS detector at the Large Hadron Collider (LHC). We focus on the estimation of irreducible WW background. We utilize a new approach to estimate the WW background using the mT2 variable. The results and future plan of the analysis will be presented.

    Contents ................... iii Lists of Tables ................... iv Lists of Figures ................... vii 1 Introduction ................... 1 1.1: The Discovery of the Higgs Boson ................... 1 1.2: Overview of the H→WW*→lνlν analysis ................... 3 1.2.1: Experimental signature ................... 3 1.2.2: The estimation of WW background ................... 4 2: The ATLAS experiment ................... 7 2.1: The ATLAS detector ................... 7 2.2: Data and MC samples ................... 8 2.2.1: Data samples ................... 8 2.2.2: MC samples ................... 9 3 VBF H→WW*→lνlν analysis ................... 11 3.1 Common event selection ................... 11 3.2 Construction of the VBF phase space ................... 12 3.2.1 Experimental signature of VBF Higgs boson ................... 12 3.2.2 Observables for background reduction ................... 13 3.2.3 Topological observables ................... 13 3.2.4 VBF observables ................... 14 3.2.5 Event selection for VBF-enriched phase space ................... 15 3.3 Results of VBF analysis in Run-2 ................... 18 4 The estimation of WW background ................... 21 4.1 Normalization factor ................... 21 4.2 Construction of a WW CR ................... 22 4.2.1 mT and mT2 variables ................... 22 4.2.2 Event selection for WW CR/VR ................... 25 4.3 New WW VR in VBF analysis ................... 26 4.4 Theory uncertainty of WW background ................... 27 4.4.1 Reco-truth comparison ................... 28 4.4.2 Theoretical uncertainties of WW background in the SR ................... 29 5 Conclusion and Outlook ................... 33 Appendix ................... 34 A Appendix ................... 35 A.1 Event displays for Higgs boson candidates ................... 35 A.2 Re-estimation of WW theoretical uncertainties with the modified pTtot variable ................... 35 A.3 Optimization of the selection for VBF phase space ................... 37 Reference ................... 41

    [1] The ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B B716 (2012) 1-29.
    [2] The CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30.
    [3] The ATLAS Collaboration, Observation and measurement of Higgs boson decays to WW* with the ATLAS detector, Phys. Rev. D 92, 012006 (2015).
    [4] The LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv: 1307.1347.
    [5] M. Tanabashi et al. (Particle Data Group), 2018 Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).
    [6] The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.
    [7] Christian Lippmann, Particle identi cation, Nucl.Instrum.Meth. A666 (2012) 148-172.
    [8] Claudia Bertella et al., Measurements of the Higgs boson production cross section via ggF and VBF in H → WW(∗) → lνlν with 36.1 fb−1 of data collected with the ATLAS detector at √s=13 TeV, ATL-COM-PHYS-2017- 1094.
    [9] The ATLAS Collaboration, Measurements of gluon-gluon fusion and vector- boson fusion Higgs boson production cross-sections in the H→WW*→lνlν decay channel in pp collisions at √s =13 TeV with the ATLAS detector, Phys. Lett. B 789 (2019) 508.
    [10] F. Cascioli et al., Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production, JHEP 01 (2014) 046.
    [11] The ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77 (2017) 317.
    [12] H.-C. Cheng and Z. Han, Minimal kinematic constraints and mT2, JHEP 12 (2008) 063.
    [13] R. K. Ellis, I. Hinchli e, M. Soldate, and J. J. Van der Bij, Higgs decay to τ+τ− A possible signature of intermediate mass Higgs bosons at high energy hadron colliders, Nucl. Phys. B297, 221 (1988).
    [14] T. Plehn, D. Rainwater, and D. Zeppenfeld, Method for identifying H → τ τ →e± μ∓ pT at the CERN LHC, Phys. Rev. D 61, 093005 (2000).
    [15] The ATLAS Collaboration, Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512, p. 1280.
    [16] Butterworth, Jon and others, PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001.
    [17] Sjostrand, Torbjorn and Mrenna, Stephen and Skands, Peter Z., A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852-867.
    [18] LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties: Report of the LHC Higgs Cross Section Working Group. Technical Report CERN-2013-004. CERN-2013-004, Geneva, 2013.
    [19] Charalampos Anastasiou, Claude Duhr, Falko Dulat, Franz Herzog, and Bernhard Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett., 114:212001, 2015.
    [20] Charalampos Anastasiou, Claude Duhr, Falko Dulat, Elisabetta Furlan, Thomas Gehrmann, Franz Herzog, Achilleas Lazopoulos, and Bernhard Mistlberger, High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP, 05:058, 2016.
    [21] Stefano Actis, Giampiero Passarino, Christian Sturm, and Sandro Uccirati, NLO electroweak corrections to Higgs boson production at hadron colliders, Phys. Lett. B, 670:12–17, 2008.
    [22] Charalampos Anastasiou, Radja Boughezal, and Frank Petriello, Mixed QCDelectroweak corrections to Higgs boson production in gluon fusion, JHEP, 04:003, 2009.
    [23] Paolo Nason and Carlo Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG, JHEP, 02:037, 2010.
    [24] Keith Hamilton, Paolo Nason, Emanuele Re, and Giulia Zanderighi, NNLOPS simulation of Higgs boson production, JHEP, 10:222, 2013.
    [25] John M. Campbell, R. Keith Ellis, Rikkert Frederix, Paolo Nason, Carlo Oleari, and Ciaran Williams, NLO Higgs boson production plus one and two jets using the POWHEG BOX, MadGraph4 and MCFM, JHEP, 07:092, 2012.
    [26] Alwall, J. and Frederix, R. and Frixione, S. and Hirschi, V. and Maltoni, F. and Mattelaer, O. and Shao, H. S. and Stelzer, T. and Torrielli, P. and Zaro, M., The automated computation of tree-level and next-to-leading order di erential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079.
    [27] Rikkert Frederix and Stefano Frixione, Merging meets matching in MC@NLO, JHEP, 12:061, 2012.
    [28] Johannes Bellm et al, Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C, 76(4):196, 2016.
    [29] M. Ciccolini, Ansgar Denner, and S. Dittmaier, Strong and electroweak corrections to the production of Higgs boson + 2 jets via weak interactions at the LHC, Phys. Rev. Lett., 99:161803, 2007.
    [30] Mariano Ciccolini, Ansgar Denner, and Stefan Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D, 77:013002, 2008.
    [31] Paolo Bolzoni, Fabio Maltoni, Sven-Olaf Moch, and Marco Zaro, Higgs Boson Production via Vector-Boson Fusion at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett., 105:011801, 2010.
    [32] Gionata Luisoni, Paolo Nason, Carlo Oleari, and Francesco Tramontano,
    HW±/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO, JHEP, 10:083, 2013.
    [33] T. Han and S. Willenbrock. Qcd correction to the pp → wh and zh total cross sections, Phys. Lett. B, 273(1):167 – 172, 1991.
    [34] Oliver Brein, Abdelhak Djouadi, and Robert Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B, 579:149–156, 2004.
    [35] M. Ciccolini, S. Dittmaier and M. Krmer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders, Phys. Rev. D, 68:073003, 2003.
    [36] T. Gleisberg, Stefan. Höche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and J. Winter, Event generation with SHERPA 1.1, JHEP, 02:007, 2009.
    [37] Tanju Gleisberg and Stefan Höche, Comix, a new matrix element generator, JHEP, 12:039, 2008.
    [38] Richard D. Ball et al, Parton distributions for the LHC Run II, JHEP, 04:040, 2015.
    [39] Ste en Schumann and Frank Krauss, A Parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP, 03:038, 2008.
    [40] Stefan Höche, Frank Krauss, Marek Schönherr, and Frank Siegert, QCD matrix elements + parton showers: The NLO case, JHEP, 04:027, 2013.
    [41] F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini, and F. Siegert,
    Precise Higgs-background predictions: merging NLO QCD and squared quark- loop corrections to four-lepton + 0,1 jet production, JHEP, 01:046, 2014.
    [42] Hung-Liang Lai, Marco Guzzi, Joey Huston, Zhao Li, Pavel M. Nadolsky, Jon Pumplin, and C. P. Yuan, New parton distributions for collider physics, Phys. Rev. D, 82:074024, 2010.
    [43] Fabrizio Caola, Kirill Melnikov, Raoul Röntsch, and Lorenzo Tancredi,
    QCD corrections to W^+W^- production through gluon fusion, Phys. Lett. B, 754:275–280, 2016.
    [44] Stefan Höche, Ste en Schumann, and Frank Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D, 81:034026, 2010.
    [45] Stefano Frixione, Paolo Nason, and Giovanni Ridol , A positive-weight next- to-leading-order Monte Carlo for heavy avour hadroproduction, JHEP, 09:126, 2007.
    [46] Michał Czakon, Paul Fiedler, and Alexander Mitov, Total Top-Quark Pair- Production Cross Section at Hadron Colliders Through O(αS4), Phys. Rev. Lett., 110:252004, 2013.
    [47] Emanuele Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C, 71:1547, 2011.
    [48] Sjöstrand, Torbjorn and Mrenna, Stephen and Skands, Peter Z., PYTHIA 6.4 physics and manual, 05 (2006) 026.
    [49] Kirill Melnikov and Frank Petriello, Electroweak gauge boson production at hadron colliders through O(αS2 ), Phys. Rev. D, 74:114017, 2006.
    [50] Charalampos Anastasiou, Lance J. Dixon, Kirill Melnikov, and Frank Petriello, High precision QCD at hadron colliders: Electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D, 69:094008, 2004.
    [51] V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt, D. Zeppenfeld , Higgs + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001.

    QR CODE