簡易檢索 / 詳目顯示

研究生: 宋志渝
sung chih yu
論文名稱: 一個連續攪動的槽反應器模型之分歧問題探討
Numerical Investigation for the Bifurcation Problems of a Continuous Stirred Tank Reactor Model
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 104
中文關鍵詞: 切線預測法割線預測法牛頓迭代法隱函數定理虛擬弧長延拓法打靶法平衡解週期解
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本篇論文主要是在探討一個連續攪動的槽反應器模型之實分歧及Hopf分歧問題。我們使用Hopf分歧定理及牛頓迭代法,來求模型平衡解路徑上的Hopf分歧點及實分歧點,亦使用切線預測法﹑割線預測法﹑牛頓迭代法﹑隱函數定理﹑虛擬弧長延拓法,找出過實分歧點的平衡解路徑,並使用打靶法﹑切線預測法﹑Runge-Kutta法﹑割線預測法﹑牛頓迭代法﹑隱函數定理及虛擬弧長延拓法,求出過Hopf分歧點的週期解路徑。


    Abstract
    The main purpose of this paper is to study the numerical investigation for the real and Hopf bifurcation problems of a Continuous Stirred Tank Reactor model. We use the Hopf bifurcation theorem and Newton’s method to compute Hopf bifurcation points and real bifurcation points. We use the tangent predictor, secant predictor, Newton’s method, implicit function theorem and the pseudo-arclength continuation method to follow the steady-state solution branches which passes through a real bifurcation point, we also use the shooting method, Runge-Kutta method, tangent predictor, secant predictor, Newton’s method, implicit function theorem, and the pseudo-arclength continuation method to follow the periodic solution branches which passes through a Hopf bifurcation point.

    目 錄 第一章 緒論...................................1 第二章 分歧理論與虛擬弧長延拓法..................4 2.1 分歧問題..............................4 2.2 分歧理論與隱函數定理...................6 2.3 局部延拓法............................8 2.4 虛擬弧長延拓法........................11 第三章 非線性模型平衡解與週期解之數值解法.........14 3.1 Hopf分歧點的求法......................14 3.2 過實分歧點的平衡解分支.................20 3.3 過Hopf分歧點的週期解分支...............30 第四章 數值實驗................................53 4.1 實驗4-1.............................54 4.2 實驗4-2.............................60 4.3 實驗4-3.............................86 第五章 結論與檢討.............................102 參考文獻........................................103

    參考文獻
    [1] Allgower, E.L. and Chien, C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265-1281, (1986)
    [2] Aselone, P. M. and Moore, R. H., An Extension of the Newton-Kantorovich Method for Solving Nonlinear Equations with An Application to Elasticity, J. Math. Anal. 13, pp.476-501, (1966)
    [3] Bauer, L., Reiss, E. L., and Keller, H. B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568, (1970)
    [4] Choi, Y. S., Jen, K. C., (簡國清) and McKenna, P. J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math., 47, pp.283-306, (1991)
    [5] Coron, J. M., Periodic Solutions of a Nonlinear Wave Equation without Asumptions of Monotonicity. Math. Ann., 262, pp.273-285, (1983).
    [6] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, pp.1-35, (1977).
    [7] Crandall, M. G., and Rabinowitz, P.H. Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C.and Bessis, D., NATO Advanced Study Institute Series,(1979).
    [8] Eusebius Doedel Laurette S. Tuckerman (1999),Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems.
    [9] Hassard, B. D.,Kazarinoff, N. D., Wan, Y. H.(1981),Theory and Applications of Hopf Bifurcation, Cambridge University Press.
    [10] Jen, K. C. (簡國清), The Stability and Convergence of a Crank-Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol 23, No. 2, pp.97-121, (1995).
    [11] Jepson, A.D. and Spence, A.,Numerical Methods for Bifurcation Problems, State of the Art in Numerical Analysis, edit bu A. Iserles, MJD Powell,(1987).
    [12] Kawada, T., and Hiral, A. Additional Mass Method – A New Approach to Suspension Bridge Rehabitation. Official Proceedings, 2nd Annual International Bridge Conference. Engineers of Society of Western Pennsylvania. (1985).
    [13] Keller, H. B. and Langford, W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems,Arch. Rational Mech.Anal.,48, 83-108(1972).
    [14] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p.73, (1978).
    [15] Keller, H. B. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz, P. H. Academic Press, pp.359-384, (1977).
    [16] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems,TATA Institute of Fundamental Research , Springer-Verlag, (1987).
    [17] Kubicek, M.and Marek, M., Computational Methods in Bifurcation
    Theory and Dissipative Structyres, Springer-Verlag, New York,(1983).
    [18] Marsden J. E.,McCracken, M.(1976), The Hopf Bifurcation and its Application, Applied Mathematical Scieness, 19. Springer-Verlag.
    [19] Lazer, A. C., and McKenna, P. J. Large Scale Oscillatory Behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincare: Analyse non Lin’eaire 4(3), pp.243-274, (1987).
    [20] Lazer, A. C., and McKenna, P. J. A Symmetry Theorem and Applications to Nonlinear Partial Differential Equations. J. Diff. Eq. 72, pp.95-106, (1988).
    [21] Lazer, A. C., and McKenna, P. J. Large Amplitude Periodic Oscillations in Suspension Bridge: Some New Connections with Nonlinear Analysis. SLAM Rev. 32, pp.537-578, (1989).
    [22] Matsuzaki, M. Experimental Study on Vortex Excited Oscillation of Suspension Bridge Towers. Trans. Jap. Soc. Civil Eng. 15,172-174, (1985).
    [23] McKenna P. j. and Walter W., On the Mulitiplicity of the Solution Set of Some Nonlinear Boundary Value Problems. Nonlinear Analysis 8, pp.893-907, (1984).
    [24] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from Simple EigenValues, Journal of Functional Analysis 8, pp.321-340, (1971).
    [25] Michael G. Crandall and Paul H. Rabinowitz, Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by C. Bardos and D. Bessis, NATO Advanced Study Institute Series, (1979).
    [26] Patil, S. P. Response of Infinite Railroad Track to Vibrating Mass. J. Eng. Mech. 114, 688-703, (1988).
    [27] Q-Heung Choi and Tacksun Jung, Periodic Solution of the Lazer-McKenna Suspension Bridge Equation, to be submitted , (1989).
    [28] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, (1980).
    [29] McKenna P. j. and Walter W., Nonlinear Oscillations in a Suspension Bridge. Archive for Rational Mechanics and Analysis. 98(2), 167-177, (1987).
    [30] 雷晉干和馬亞南著, 分歧問題的逼近理論與數值方法, 武漢大學,中國, (1991)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE