簡易檢索 / 詳目顯示

研究生: 劉凱文
Liu, Kai-Wen
論文名稱: 超臨界二氧化碳布雷頓循環之壓縮機葉片設計與分析
Supercritical CO2 Brayton Cycle Compressor Blade Design and Analysis
指導教授: 蔣小偉
Chiang, Hsiao-Wei
口試委員: 徐菘蔚
Hsu, Sung-Wei
郭啟榮
Kuo, Chi-Ron
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 超臨界二氧化碳布雷頓循環壓縮機葉片
外文關鍵詞: Supercritical CO2, Brayton Cycle, Compressor Blade
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 伴隨科技的日新月異,工業每年消耗大量的電力來從事生產,然而能源
    使用率卻不到50%,使得尋求替代能源及回收能源的方法勢在必行,在回
    收能源上近來許多研究方向開始紛紛轉往超臨界循環發展。
    本研究針對超臨界二氧化碳之布雷頓循環作初步設計,使用二氧化碳的
    原因是基於其流體穩定性佳、臨界點條件低、取得來源難度低以及適用範
    圍廣,並且可減少環境中的溫室氣體。
    本研究參考Baljie 的比速比徑關係圖,以及其他壓縮機葉片設計相關的
    文獻,建構出初步的一維尺寸與角度,並經由ANSYS 與文獻[35]驗證,比
    較同一個轉子葉輪之壓力分布圖、效率與壓縮比,模擬結果誤差皆在6%以
    內,接著在轉子設計點上,藉由中心線設計(meanline design)繪製出壓縮機
    葉片與轉子,並參考不同關於尺寸間的比例與進出口角度的文獻,定義出
    細部的尺寸與角度關係,接著使用ANSYS中的BladeGen 設計岀幾何模型,
    利用TurboGrid 進行網格切割,並測試網格獨立性,最後將模型匯入CFX 設
    定邊界條件,壓縮機葉片之模擬效率約為50%,接著與使用理想氣體(Air
    Ideal Gas)做為工作流體的模擬結果比較後,發現使用理想氣體之壓縮機轉
    子效率只有25%,證明超臨界二氧化碳在發電熱效率上有顯著的優勢。


    Accompanied by the prosperity of technology, the electricity needed for
    production is increasing year to year. However, the overall efficiency is not above
    50%, and thus it will produce large amount of carbon dioxide and waste heat. It
    will give rise to the global warming aggravation and the air pollution, sour rain,
    ozonosphere holes and the destruction of forest…etc. So this paper intend to find
    an solution to finding alternative energy and recovery of waste heat, with the
    increasing literatures focusing on the super critical cycle in the energy recovery
    field.
    This paper put aim on the super critical Brayton cycle to make the first
    compressor design. According to the Sandia Laboratory’ reports, the overall
    efficiency of the combined cycle can be high above 50%. The reason to use carbon
    dioxide to be the working fluid is due to its stability, low critical condition, large
    range of application and capable of reducing the global warming.
    This paper design the prototype of the blades and rotors of the compressor.
    And then, by using ANSYS this paper propose a layout of the rotor and blade which
    can bear high temperature and pressure(7.8~15 MPa, 300~500K). And this model
    has been verified by comparing the simulation results with the paper [35]. The
    results are quite similar where the errors are below 6%. The efficiency of the
    impeller is about 50.1%, compared with the 25% efficiency of the impeller by using
    Air Ideal Gas as working fluid. It has been proven that the SCO2 compressor
    impeller is the best choice over the conventional Rankine cycle and the Brayton
    cycle by Air Ideal Gas. With the advantages of high rotating speed and the low
    volume, the pressure ratio of this compressor is about 1.85; the efficiency is about
    50%.

    摘要 ................................................................................................................................... I ABSTRACT .................................................................................................................... II 致謝 ................................................................................................................................ III 圖目錄 ............................................................................................................................. V 表目錄 ......................................................................................................................... VIII 符號說明 ........................................................................................................................ IX 第一章、前言 .................................................................................................................. 1 1.1 研究動機 ................................................................................................................. 1 1.2 文獻回顧 ................................................................................................................. 2 1.3 研究目的 ............................................................................................................... 15 第二章 、理論分析 ....................................................................................................... 17 2.1 布雷頓循環與壓縮機介紹 ................................................................................... 17 2.2 壓縮機葉片分析 ................................................................................................... 23 2.3 影響葉片性能其餘因素 ....................................................................................... 31 第三章 、 研究方法 ...................................................................................................... 35 3.1 系統架設流程 ................................................................................................... 36 3.2 流場模擬 ........................................................................................................... 37 第四章 、 研究結果與討論 .......................................................................................... 47 4.1 模型驗證 ............................................................................................................... 47 4.1.1 比對文獻之設計與流程 .................................................................................... 47 4.1.2 模型驗證 ............................................................................................................ 51 4.2 壓縮機轉子設計點 ............................................................................................... 53 4.2.1 設計點參考來源與計算 .................................................................................... 53 4.2.2 壓縮機轉子幾何形狀 ........................................................................................ 57 4.2.3 壓縮機轉子LE 至TE 角度與厚度 ................................................................... 63 4.2.4 轉子幾何分析與模擬結果 ................................................................................ 65 4.3 網格獨立測試 ................................................................................................... 74 第五章、結論與未來工作 ............................................................................................ 81 參考文獻 ........................................................................................................................ 83

    [1] Y.-L. Chen, "Optimal Equipment Installation Planning for Factory Waste Heat Recovery," 國立雲林科
    技大學工業工程與管理研究所碩士論文, January
    2013. http://www.theenergycollective.com/ed-dodge/2163416/supercritical-carbon-dioxide-powercycles-
    starting-hit-market
    [2] Supercritical Carbon Dioxide Power Cycles Starting to Hit the Market - Energy Collective,
    [3] Turbomachinery Lecture 5a - Airfoil, Cascade Nomenclature - Frames of Reference - Velocity Triangles
    - Euler’s Equation, http://slideplayer.com/slide/7711357/
    [4] E. G. Feher, "The supercritical thermodynamic power cycle," Energy conversion, vol. 8, pp. 85-90, 1968.
    [5] G. Angelino, "Carbon dioxide condensation cycles for power production," Journal of Engineering for
    Gas Turbines and Power, vol. 90, pp. 287-295, 1968.
    [6] S. A. Wright, R. F. Radel, M. E. Vernon, G. E. Rochau, and P. S. Pickard, "Operation and analysis of a
    supercritical CO2 Brayton cycle," Sandia Report, No. SAND2010-0171, 2010.
    [7] Yoonhan Ahn et al., “Design consideration of supercritical CO2 power cycle integral
    experiment loop,” Energy 86 (2015) 115-127
    [8] G. Kimzey, "Development of a Brayton Bottoming Cycle using Supercritical Carbon Dioxide as the
    Working Fluid." ELECTRIC POWER RESEARCH INSTITUTE
    University Turbine Systems Research Program
    [9] J. Bahamonde Noriega, "Design method for s-CO2 gas turbine power plants: Integration of
    thermodynamic analysis and components design for advanced applications", TU Delft, Delft University
    of Technology, 2012.
    [10] Costante M Invernizzi and Teus van der Stelt, “Supercritical and real gas Brayton cycles operating with
    mixtures of carbon dioxide and hydrocarbons ,” J Power and Energy
    226(5) 682–693
    [11] P. Garg, P. Kumar, and K. Srinivasan, "Supercritical carbon dioxide Brayton cycle for concentrated solar
    power," The Journal of Supercritical Fluids, vol. 76, pp. 54-60, 2013.
    [12] Motoaki UTAMURA, Hiroshi HASUIKE and Takashi YAMAMOTO , " Demonstration Test Plant of
    Closed Cycle Gas Turbine with Supercritical CO2 as Working Fluid", Strojarstvo 52 (4) 459-465 (2010).
    [13] K. L. Suder, "Blockage development in a transonic, axial compressor rotor," Journal of turbomachinery,
    vol. 120, pp. 465-476, 1998.
    [14] D. Flaxington and E. Swain, "Turbocharger aerodynamic design," Proceedings of the Institution of
    Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 213, pp. 43-57, 1999.
    84
    [15] O.E Balje, “Turbomachines: A Guide to Design Selection and Theory,” John Wiley & Sons Inc.; 1st
    edition (June 17, 1981)
    [16] Enrico Sciubba, “Experimental Fitting of the Re-Scaled Balje Maps for Low-Reynolds Radial
    Turbomachinery ,” Energies 2015, 8, 7986-8000
    [17] Whitfield, A. "The preliminary design of radial inflow turbines." Trans. ASME J. Turbomach 112.1 (1990):
    50-57.
    [18] C. P. Kothandaraman, R. Rudramoorthy, Fluid Mechanics and Machinery ,New Age International
    Publishers
    [19] M. P. Boyce, Gas turbine engineering handbook: Elsevier, 2012.
    [20] Rainer Kurz, Klaus Brun, “Gas Turbine Performance: What Makes the Map,” Solar Turbines Incorperated,
    San Diego, California
    [21] P. Came and C. Robinson, "Centrifugal compressor design," Proceedings of the Institution of Mechanical
    Engineers, Part C: Journal of Mechanical Engineering Science, vol. 213, pp. 139-155, 1998.
    [22] J.-M. Zhang, "Design and Analysis System of a Turbopump Impeller," 國立清華大學動力機械工程學
    系碩士論文, January 2004.
    [23] 离心泵的性能参数与特性曲线http://flowviz.tumblr.com.
    [24] D. Japikse, W. D. Marscher, and R. B. Furst, "Centrifugal pump design and performance," Wilder, VT:
    Concepts ETI, Inc, 1997., 1997.
    [25] J. F. Gülich, Centrifugal pumps: Springer, 2008.
    [26] David H. Robinson & Peter J. Beaty, “Compressor types, classifications and applications”
    [27] M.O. Khan, “Basic Practices in Compressors Selection”
    [28] LEON SAPIR, “Preliminary Staging Selection for Gas Turbine Driven Centrifugal Gas Compressors,”
    UNITED ENGINEERING CENTER, 345 EAST 47th STREET, NEW YORK, N.Y. 10017© 1973 by
    ASME
    [29] Wenyang, Shao et al. “Design Parameters Exploration For Supercritical CO2 Centrifugal Compressors
    Under Multiple Constraints”, Turbomachinery and Fluid Engineering Research Institution, Dalian
    University of Technology, ASME Turbo Expo 2016: Turbine Technical Conference and Exposition
    [30] Yifang Gong et al. “Analysis of Radial Compressor Options for Supercritical CO2 Power Conversion
    Cycles,” Topical Report, 2006
    [31] Rodgers , “Typical Performance Characteristics of Gas Turbine Radial Compressor,” J. Eng. Power 86(2),
    161-170 (Apr 01, 1964) (10 pages)
    [32] Mishra, Shashank, Shaaban Abdallah, and Mark Turner. "Flow Characteristics of a Novel Centrifugal
    Compressor Design." ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition.
    American Society of Mechanical Engineers, 2016.
    85
    [33] Baljé, O. E. -- A Study on Design Criteria and Matching of Turbomachines- Part B—Compressor and
    Pump Performance and matching of turbocomponents, © 1962 by ASME
    [34] Tough, R. A., A. M. Tousi, and J. Ghaffari. "Improving of the micro-turbine's centrifugal impeller
    performance by changing the blade angles." International Conference on Computational & Experimental
    Engineering and Sciences Online Version. Vol. 14. No. 1. 2010.
    [35] Pecnik, Rene, Enrico Rinaldi, and Piero Colonna. "Computational fluid dynamics of a radial compressor
    operating with supercritical CO2." Journal of Engineering for Gas Turbines and Power 134.12 (2012):
    122301.
    [36] Whitfield, A. "Conceptual Design of a Centrifugal Compressor Including Consideration of the Effect of
    Inlet Prewhirl." ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition.
    American Society of Mechanical Engineers, 1992.
    [37] https://zh.wikipedia.org/wiki/%E7%87%83%E6%B0%A3%E6%B8%A6%E8%BC%AA%E7%99%BC
    %E5%8B%95%E6%A9%9F, Gas Turbine Engine
    [38] https://en.wikipedia.org/wiki/Brayton_cycle, Brayton Cycle

    QR CODE