簡易檢索 / 詳目顯示

研究生: 鐘元彬
Yuan-Bin Chung
論文名稱: 應用金屬閘極與阻擋層整合矽鍺通道以改善電荷陷阱式快閃記憶體元件之效能
Operation of enhancement on charge trapping flash memory devices with integration metal gate and blocking layer and Si-Ge channel
指導教授: 張廖貴術
Kuei-Shu Chang-Liao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 124
中文關鍵詞: 電荷陷阱式快閃記憶體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 浮動閘極結構的穿隧氧化層厚度約8nm,而SONOS結構的穿隧氧化層大都在3nms左右,所以如何在不變動穿隧氧化層的前提下,仍使元件保証有十年以上的電荷保存力(Data Retention)且能加快元件操作,如抹除操作,是SONOS結構面臨的最主要課題之一
    本論文的研究重點主要包含兩個方向:
    (1) 利用高功函數金屬會使能帶彎曲的特性,加快元件操作包括寫入與抹除,雖然這有犧牲一點資料保存能力,但整體起來是值得的。氮化鉬(MoN)金屬閘極是最好的証據,他擁有最佳的寫入與抹除操作,但資料保存能力相對較差。後續實驗則是如何保持住金屬高功函數的優點,使其不在後續製程,或與阻擋層整合時發生不良效果。我們使用堆疊結構的金屬閘極(TiN100/MoN400),可以改善與二氧化矽的整合問題,但與氧化鋁整合則效果差。
    (2) 利用磊晶的矽鍺薄膜當N型通道材料,並取其對於價帶會產生彎曲產生一位能井的特性,有利於電洞穿隧進入儲存層的優點,期望可以加快抹除操作,且不損傷資料保存能力。由實驗中發現當退火溫度高,且鍺含量為11%,覆蓋的矽薄膜厚度為10Å時這矽鍺通道對元件的改善最明顯。


    摘要 I 目錄 III 圖目錄 VII 表目錄 XI 第一章 序論 1 1.1 前言 1 1.2 快閃記憶體面臨問題 2 1.3 電荷陷阱式快閃記憶體的結構及其優點 3 1.4 電荷陷阱式快閃記憶體面臨的問題 5 1.5 論文回顧 6 1.6 各章摘要 8 第二章 快閃記憶體元件操作方法 15 2.1 寫入與擦拭方法 15 2.1.1 通道熱電子注入寫入 15 2.1.2 F-N穿隧寫入 16 2.1.3 F-N穿隧抹除 17 2.2 耐久力(Endurance) 18 2.3 干擾 19 2.4 電荷保持力 21 第三章 實驗規劃與元件製程 30 3.1 實驗規劃 30 3.2 電容元件製程 31 3.2.1 晶片刻號 31 3.2.2 晶背歐姆接觸(Ohmic Contact) 32 3.2.3 熱成長穿隧氧化層 32 3.2.4 沈積電荷儲存層及阻擋氧化層 33 3.2.5 後段製程 33 第四章 不同功函數金屬閘極與不同阻擋層對電荷陷阱式快閃記憶體元件特性的影響 39 4.1 研究背景與目的 39 4.2 實驗規劃及製程 40 4.2.1 不同金屬閘極厚度 41 4.2.2 不同阻擋層材料 41 4.2.3 不同功函數金屬閘極 41 4.3 結果與討論 41 4.3.1 不同金屬閘極厚度 41 4.3.2 不同阻擋層材料 43 4.3.3 不同功函數金屬閘極 45 4.4 結論 48 第五章 不同結構金屬閘極與阻擋層整合對電荷陷阱式快閃記憶體元件特性的影響 65 5.1研究背景與目的 65 5.2 實驗規畫與製程 66 5.2.1 堆疊式金屬閘極與二氧化矽阻擋層整合: 66 5.2.2 堆疊式金屬閘極與氧化鋁阻擋層整合: 67 5.2.3 堆疊式金屬閘極與阻擋層材料整合比較: 67 5.3 結果與討論 67 5.3.1 不同結構金屬閘極與二氧化矽整合 67 5.3.2 不同結構金屬閘極與氧化鋁阻擋層整合 71 5.3.3 堆疊式金屬閘極與不同阻擋層整合比較 73 5.4 結論 74 第六章 磊晶矽鍺薄膜通道對電荷陷阱式快閃記憶體元件特性的影響 89 6.1 研究背景與目的 89 6.2 實驗規畫與製程 90 6.2.1 沉積完金屬閘極高溫退火: 90 6.2.2 磊晶矽鍺薄膜之鍺含量:, 91 6.2.3 覆蓋於磊晶矽鍺上的矽薄膜厚度: 91 6.3 結果與討論 91 6.3.1 沉積完金屬閘極高溫退火 92 6.3.2 磊晶矽鍺薄膜之鍺含量 94 6.3.3 覆蓋於磊晶矽鍺上的矽薄膜厚度 97 6.4 結論 99 第七章 結論與建議 119 7.1結論 119 7.1.1 金屬閘極與阻擋層整合 119 7.1.2 使用磊晶矽鍺作為通道材料 120 7.2建議 121 參考文獻 122

    [1] Sanghun Jeon, et al. “High Work-Function Metal Gate And High-K Dielectrics For Charge Trap Flash Memory Device Applications” IEEE Transactions On Device Letters, Vol. 52 No 12, December 2005,pp325-328.
    [2] Chi-Chao Wang, et. al “Enhanced Band-To-Band-Tunneling-Induced Hot-Electron Injection In p-Channel Flash by Band-Gap Offset Modification” IEEE Electron Device Letters, Vol. 27 No 9, September 2006,pp749-751.
    [3] Sheng-Chih Lai , et al. “MA BE-SONOS: A Bandgap Engineered SONOS using Metal Gate and Al2O3 Blocking Layer to Overcome Erase Saturation” IEEE 2007,pp88-89.
    [4] Marvin H. White, et al., ”On the go with SONOS”, IEEE Circuit & Device, July 2000, p22.
    [5] Marvin H. White, et al., “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol.20, No.2, JUNE 1997, p190.
    [6] Jiankang Bu, et al., “Retention reliability enhanced SONOS NVSM with scaled programming voltage”, IEEE Aerospace Conference paper, Vol.5, P5-2383 5-2390,2001
    [7] K. Tamer San, et al., “Effects of erase source bias on Flash EPROM device reliability”, IEEE Transactions on Electron Devices , Vol.42, No.1, JANUARY 1995, p150.
    [8] T. Sugizaki, et al., “Novel multi-bit SONOS type flash memory using a high-k charge trapping layer”, IEEE Symposium on VLSI Technology Digest of Technical Paper, 2003, p27.
    [9] Jan Van Houdt, et al., “High-k materials for nonvolatile memory applications” ,IEEE Physics Symposium, 2005,p234.
    [10] Hang-Ting Lue, et al., ”BE-SONOS A bandgap engineered SONOS with excellent performance and reliability”, IEEE International Electron Devices Meeting, 2005.
    [11] Kuo-Hong Wu, et al., ”SONOS device with tapered bandgap nitride layer”, IEEE Transactions on Electron Device Letter, 2005 Vol52 No5,p987.
    [12 Robert F. Steimle,et al., ”Hybrid Silicon Nanocrystal Silicon Nitride Dynamic Random Access Memory” Dec. 2003 Page(s):335 – 340 Digital Object Identifier
    [13] Verma, et al., ”Reliability Performance of ETOX Based Flash Memory”, International Reliability Physics Symp, P.158, 1998.
    [14] Haddad, et al., ”Degradation Due to Hole Trapping in Flash Memory Cells”, IEEE Electron Dev. Lett., Vol.10, No3, P.117, Mar. 1989.
    [15] Adam Brand, et al., ”Novel Read Distub Failure Mechanism Induced by Flash Cycling”, International Reliability Physics Symp., P.127, 1993.
    [16] Yan-Ny Tan, et al., ”Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage Layer”, IEEE Transactions on Electron Device ,Vol.51, No.7,p1143, 2004.
    [17] Yan-Ny Tan, et al., ”High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation”, IEEE Electron Device Meeting, p889-892, 2004.
    [18] M. Specht, et al., ”Retention time of novel charge trapping memories using Al2O3 dielectrics”, IEEE Symposium on VLSI, p155, 2003.
    [19] Sanghum Jeon, et al., ”Triple high k stacks (Al2O3-HfO2-Al2O3) with high pressure (10atm) H2 and D2 annealing for SONOS type flash memory device applications”, IEEE Conference on Nanotechnology, p53,2004.
    [20] Xuguang Wang, et al., ” A novel high-k SONOS memory using TaN Al2O3/Ta2O5 /HfO2 Si structure for fast speed and long retention operation”, IEEE Transactions on Electron Device, Vol.53, No.1,p78, 2006.
    [21] Naoto Umezawa,et al., ” The Role of Nitrogen Incorporation in Hf-based High-k Dielectrics: Reduction in Electron Charge Traps”, IEEE Proceedings of ESSDERC, France, 2005,p201.
    [22] Y.Z. You, et al.” Plasma Immersion Ion Implantation and Deposition”IEEE Mechanic development and new materials, 2005 , p565.
    [23] C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R.Clark, M. Niwa and D. L. Kwong, Tech. Dig. Int.Electron Devices Meet., p857 (2002).

    [24] CC Yeo , et al.,”Impact Of Metal Work Function On Memory Properties Of charge-Trap Flash Memory Devices Using Fowler-Nordheim P/E Mode” IEEE ELECTRON DEVICE LETTERS, VOL. 27, NO. 6, JUNE 2006, pp486-488.
    [25] Chang Hyun Lee, et al.”A Novel SONOS Structure Of SiO2/SiN/Al2O3 with Tan Metal Gate For Multi-Giga Bit Flash Memories” IEEE IEDM, 03, 2003, pp613-616.
    [26] Albert Chin, et al.” cc” IEEE Transactions On Device Letters, Vol. 53 No 1, January 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE