簡易檢索 / 詳目顯示

研究生: 葉鎮愷
Yeh, Zhen-Kai
論文名稱: 通用濾波正交分頻多工中基於相位重疊的載波頻率偏移估計法應用於毫米波光載射頻系統
Carrier Frequency Offset Estimation Based on Phase Overlap Method in UF-OFDM MMW-RoF System
指導教授: 馮開明
Feng, Kai-Ming
口試委員: 葉建宏
Yeh, Chien-Hung
顏志恆
Yan, Jhih-Heng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 64
中文關鍵詞: 通用濾波正交分頻多工光載射頻系統載波頻率偏移多用戶上傳
外文關鍵詞: (Universal Filtered-Orthogonal Frequency Division Multiplexing, Radio-over-fiber system, Carrier Frequency Offset, Multi-users uplink
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通用濾波正交分頻多工(Universal Filtered-Orthogonal Frequency Division
    Multiplexing, UF-OFDM)透過將每一個資源區塊經過濾波器濾波後來降低帶外輻
    射(Out-of-band radiation)以增加頻譜效益,同時也具有不需要循環前綴的優點,
    因此 UF-OFDM 也被認為是第五代行動通訊系統(5G)中的候選波形技術。
    在多用戶上傳系統中,基地台會因為傳送端與接收端之間的振盪器(Local
    Oscillator, LO)不匹配造成頻率的誤差以及每位用戶端受到都卜勒效應的影響程
    度不相同,因此不同用戶端會有相異的載波頻率偏移(Carrier Frequency Offset,
    CFO) , 而 這些 相 異的 載 波頻 率偏 移會產 生 載波 間互 相干擾 (Inter-Carrier Interference, ICI)面臨多用戶存取干擾(Multiple Access Interference, MAI)的問題,使系統的表現受到影響。
    本論文中提出一個新穎的載波頻率偏移估計方法,降低進行頻率搜索時所花
    費的複雜度,同時提升頻率估計的精確程度。所提出的方法為利用前導碼
    (Preamble)與濾波器進行摺積後的特性,在此特性下前導碼會被分為許多區段,
    而不同區段間會有對應的頻率估計範圍,利用每個區段間有不同的頻率估計範圍
    的特性,來進行相位的重疊確認,藉此搜索正確的載波頻率偏移量,並使用多級
    平均的方法,提升估計的準確性,完成載波頻率偏移的補償。
    本論文中也結合光纖無線通訊系統(Radio Over Fiber, RoF)實驗架構,展示
    UF-OFDM 在單用戶以及多用戶上傳時之間的差異,並比較不同的載波頻率偏移
    估計方法與接收光功率(Receive Optical Power, ROP)的表現。


    Universal Filtered-Orthogonal Frequency Division Multiplexing (UF-OFDM)
    increases spectral efficiency by filtering each resource block and then reducing out-ofband radiation. It also has the advantage of not requiring a cyclic prefix, so UF-OFDM
    is considered as a candidate waveform in the fifth-generation mobile communication
    system (5G).
    In the multi-user uplink system, the base station will cause frequency offset due to
    the mismatch of the Local Oscillator (LO) between the transmitter and the receiver, and
    each user is affected by the different degrees of Doppler effect. Therefore, users will
    have different Carrier Frequency Offset (CFO), it will cause Inter-Carrier Interference
    (ICI) and face multi-user access interference (Multiple Access Interference, MAI),
    which affects the performance of the system.
    In this paper, a novel carrier frequency offset estimation method is proposed,
    which reduces the complexity of frequency search and improves the accuracy of
    frequency offset estimation. The proposed method utilizes the characteristic of the
    preamble and the filter. By this characteristic, the preamble will be divided into many
    sections, and there will be corresponding frequency estimation ranges between different
    sections. There are different frequency estimation ranges between each section to
    perform phase overlap confirmation, thereby searching for the correct carrier frequency
    offset, and using the multi-level averaging method to improve the accuracy of the
    estimation.
    This paper also combines the experimental architecture of Radio Over Fiber (RoF)
    to demonstrate the difference between UF-OFDM in single-user and multi-user,
    compare different carrier frequency offset estimation methods and Receive Optical
    Power (ROP) performance.

    摘要-------------------------------------------------------------------------------------------------I ABSTRACT--------------------------------------------------------------------------------------II 致謝-----------------------------------------------------------------------------------------------III 圖目錄--------------------------------------------------------------------------------------------IV 表目錄--------------------------------------------------------------------------------------------VI 第 1 章 緒論--------------------------------------------------------------------------------- 1 1.1 前言------------------------------------------------------------------------------------ 1 1.2 研究目的與動機 -------------------------------------------------------------------- 4 1.3 論文架構------------------------------------------------------------------------------ 5 第 2 章 訊號介紹與實驗元件原理 ----------------------------------------------------- 6 2.1 正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM) ---- 6 2.2 通用濾波正交分頻多工(Universal Filtered-OFDM, UF-OFDM) ---------- 9 2.2.1 傳送端架構 ----------------------------------------------------------------------- 9 2.2.2 接收端架構 ---------------------------------------------------------------------- 11 2.3 濾波器的設計與選擇 ------------------------------------------------------------- 12 2.3.1 濾波器介紹 ---------------------------------------------------------------------- 12 2.3.2 多爾夫-柴比雪夫濾波器(Dolph-Chebyshev Filter)----------------------- 14 2.4 光載射頻(Radio Over Fiber, ROF)通訊系統---------------------------------- 16 2.4.1 光電調變器 : Mach-Zehnder Modulator(MZM)--------------------------- 17 2.4.2 光學 OFDM 系統的直接接收機制 ------------------------------------------ 19 第 3 章 載波頻率偏移估計介紹 ------------------------------------------------------- 22 3.1 頻率偏移估計類型 ---------------------------------------------------------------- 22 3.2 最大似然頻率估計(Maximum likelihood frequency offset estimation)--- 24 3.3 Schmidl’s 方法--------------------------------------------------------------------- 25 3.4 最小平方法(Least square method) ---------------------------------------------- 27 3.5 Li’s 方法 ---------------------------------------------------------------------------- 28 3.6 所提出相位重疊載波頻率偏移估計方法 ------------------------------------- 33 3.6.1 UF-OFDM 應用 Schmidl’s 方法 --------------------------------------------- 33 3.6.2 整數載波頻率偏移估計方法 ------------------------------------------------- 35 3.6.3 小數載波頻率偏移估計方法 ------------------------------------------------- 43 3.6.4 複雜度分析 ---------------------------------------------------------------------- 45 第 4 章 實驗設置及結果 ---------------------------------------------------------------- 47 4.1 光纖整合無線網路 ---------------------------------------------------------------- 47 4.2 實驗架構與參數 ------------------------------------------------------------------- 50 4.3 實驗結果----------------------------------------------------------------------------- 53 4.3.1 單用戶上傳系統實驗結果 ---------------------------------------------------- 53 4.3.2 多用戶上傳系統實驗結果 ---------------------------------------------------- 58 第 5 章 結論-------------------------------------------------------------------------------- 62 參考文獻----------------------------------------------------------------------------------------- 63

    [1] G. Wunder, M. Kasparick, S. ten Brink, F. Schaich, T. Wild, I. Gaspar, E. Ohlmer,
    S. Krone, N. Michailow, A. Navarro, G. Fettweis, D. Ktenas, V. Berg, M.Dryjanski,
    S. Pietrzyk, and B. Eged, “5gnow: Challenging the lte design paradigms of
    orthogonality and synchronicity,’’ in Vehicular Technology Conference(VTC
    Spring), 2013 IEEE 77th, June 2013, pp. 1-5.
    [2] G. Wunder, P. Jung, M. Kasparick, T Wild, F. Schaich, Y. Chen, S.Brink, I. Gaspar,
    N. Michailow, A. Festag, L. Mendes, N. Cassiau, D. Ktenas, M. Dryjanski, S.
    Pietrzyk, B. Eged, P. Vago, and F. Wiedmann, “5gnow: non-orthogonal,
    asynchronous waveforms for future mobile applications,” Communications
    Magazine, IEEE, vol. 52, no. 2, pp97-105, February 2014.
    [3] M. Shafi et al., “5G: A Tutorial Overview of Standards, Trials, Challenges,
    Deployment, and Practice," IEEE Journal on Selected Areas in Communications,
    vol. 35, no. 6, pp. 1201-1221, 2017.
    [4] Frank Schaich;Thorsten Wild, “Relaxed synchronization support of universal
    filtered multi-carrier including autonomous timing advance”, International
    Symposium on Wireless Communications Systems (ISWCS), pp.203-208, 2014.
    [5] Vida Vakilian, Thorsten Wild, Frank Schaich, Stephan tenBrink, Jean-Francois
    Frigon, “Universal-filted multi-carrier technique for wireless systems beyond
    LTE”, IEEE Globecom Workshops(GC Wkshps), pp.223-228, 2013.
    [6] PETER LYNCH, “The Dolph–Chebyshev Window: A Simple Optimal Filter”, 7
    American Meteorological Society, pp.655-660, 1997.
    [7] C. Lim, A. Nirmalathas, Yizhuo Yang, D. Novak and R. Waterhouse, "Radiooverfiber systems," 2009 Asia Communications and Photonics conference and
    Exhibition (ACP), Shanghai, 2009, pp. 1-10
    [8] L. Gui, B. Liu, W. Ma, and B. Song, “A novel method of frequencyoffset
    estimation using time domain PN sequences in OFDM systems,” IEEE Trans.
    Broadcast., vol. 54, no. 1, pp. 140–145, Mar. 2008.
    [9] T. C. Lin and S. M. Phoong, “A new cyclic-prefix based algorithm for blind CFO
    estimation in OFDM systems,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp.
    3995–4008, Jun. 2016
    64
    [10] T.M. Schmidl, D.C. Cox, “Robust frequency and timing synchronization for
    OFDM”, IEEE Transactions on Communications, pp.1613-1621, 1997.
    [11] P. Moose, “A technique for orthogonal frequency division multiplexing frequency
    offset correction,” IEEE Trans. Commun., vol. 42, pp. 2908–2914, Oct. 1994.
    [12] Y. Li, B. Tian, K. Yi, and Q. Yu, “A novel hybrid CFO estimation scheme for
    UFMC-based systems,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1337–1340, Jun.
    2017.
    [13] K. Shi, E. Serpedin, "Coarse frame and carrier synchronization of OFDM systems:
    a new metric and comparison," in IEEE Transactions on Wireless Communications,
    vol. 3, no. 4, pp. 1271-1284, July 2004.
    [14] J.J. Van de Beek, P.O.Borjesson, D. Landstram, J.M. Areans P.Odling, C. Ostberg,
    M. Wahlqvist, S. K. Wilson, “A time and frequency synchronization scheme for
    OFDMA”, IEEE J. Select. Area Commun., vol. 17, pp.1900-1914, Nov.1999.

    QR CODE