簡易檢索 / 詳目顯示

研究生: 簡宏洋
Jian, Hung-Yang.
論文名稱: 甲醛水合反應產生之甲二醇與其同位素衍生物的氣態紅外吸收光譜
Gaseous Infrared Spectra of the Simplest Geminal Diol CH2(OH)2 and the Isotopic Analogues in the Hydration of Formaldehyde
指導教授: 朱立岡
Chu, Li-Kang
口試委員: 張元賓
Chang, Yuan-Pin
羅佩凌
Luo, Pei-Ling
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 90
中文關鍵詞: 甲醛甲二醇偕二醇分子光譜紅外吸收光譜法水合反應大氣化學
外文關鍵詞: geminal diol, molecular spectroscopy, atmospheric chemistry
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲二醇(CH2(OH)2)為最簡單的二醇類化合物,其於大氣與太空化學皆具重要性。甲二醇可由甲醛與水分子進行水合反應產生,且其於水溶液中的紅外光譜與拉曼光譜皆已被報導,但其氣態紅外吸收光譜卻仍未被發表。因此吾人將利用傅立葉轉換紅外光譜儀觀測氣態CH2O/CD2O和H2O/D2O反應所產生之CH2(OH)2與其同位素衍生物CD2(OH)2、CH2(OD)2及CD2(OD)2之紅外吸收光譜,並搭配B3LYP/aug-cc-pVTZ方法預測相關分子之非簡諧振動波數、相對紅外強度及轉動常數等特性。於偵測之紅外光譜中,甲二醇與其同位素衍生物的紅外吸收譜帶皆與前述計算方法預測之非簡諧振動波數與紅外強度相符,且以預測的轉動常數與偶極矩導數模擬CH2(OH)2及CD2(OH)2部分振動模之振轉動譜帶也與實驗光譜吻合。其中CH2(OH)2之OCO對稱伸縮(b-type)與非對稱伸縮(a-type)振動模的譜帶中心分別位於1027 cm–1與1058 cm–1,而CD2(OH)2之CD2搖擺(a-type)振動模與COH彎曲(a,c-type)振動模之譜帶中心則位於1121 cm–1與1301 cm–1。由此研究提供甲二醇氣體之紅外光譜,將有助於日後研究偕二醇於大氣與太空中參與之相關化學反應。


    Methanediol (CH2(OH)2) is the simplest geminal diol and the important molecule in atmospheric chemistry and astrophysics. CH2(OH)2 can be generated via the reaction between formaldehyde and water and it has been investigated with infrared and Raman spectroscopy in the liquid phase. However, the infrared spectrum of gaseous methanediol has not been reported. In this experiment, we utilized Fourier-transform infrared interferometer to monitor the reactions of CH2O, CD2O, H2O, and D2O that leads to the generation of gaseous CH2(OH)2 and its isotopic analogues, CD2(OH)2, CH2(OD)2, and CD2(OD)2. The observed absorption bands of the aforementioned molecules agreed with the anharmonic vibrational wavenumbers and IR intensities predicted by B3LYP/aug-cc-pVTZ calculation. In addition, using predicted rotational constants and dipole derivatives, the simulated ro-vibrational contours of absorption bands of CH2(OH)2 and CD2(OH)2 both coincided with the experimental spectra. Concomitantly, the band origins of the OCO symmetric stretching mode (b-type) and the OCO asymmetric stretching mode (a-type) of CH2(OH)2 were determined at 1027 and 1058 cm–1, respectively;the band origins of the CD2 wagging mode (a-type) and COH bending mode (a, c-type) of CD2(OH)2 were individually determined at 1121 and 1301 cm–1. The successful infrared characterization of methanediol triggers further investigation on the related reactions of geminal diols in atmospheric chemistry and astrophysics.

    第一章 緒論 1 1.1 甲醛之重要性 1 1.1.1 甲醛的來源 1 1.1.2 甲醛水合反應 2 1.2 甲二醇之重要性 3 1.2.1 甲二醇於大氣化學反應之重要性 3 1.2.2 甲二醇於太空化學領域之重要性 4 1.3 甲二醇之紅外光譜、拉曼光譜與其於常溫氣態環境中之反應性 4 1.4 研究動機 5 參考文獻 16 第二章 光譜技術原理 21 2.1 傅立葉轉換紅外光譜法 21 2.1.1 麥克森干涉儀 22 2.1.2 干涉光譜之形成 22 2.1.3 傅立葉轉換 23 2.1.4 截斷函數與削足函數 23 2.1.5 相位誤差與相位校正 25 2.1.6 連續掃描模式 26 2.2 振轉動光譜與躍遷類型 26 2.2.1 轉動慣量與轉子類型 26 2.2.2 對稱陀螺轉子 27 2.2.3 非對稱陀螺轉子 27 2.2.4 分子振動與躍遷類型 28 2.2.5 振轉動光譜 29 2.3 Gaussian計算軟體與PGOPHER光譜模擬軟體 30 參考文獻 43 第三章 實驗系統、樣品製備及實驗流程 45 3.1 氣態紅外吸收光譜之實驗系統 45 3.1.1 氣體進樣系統 45 3.1.2 反應腔體 45 3.1.3 傅立葉轉換紅外光譜儀 45 3.2 樣品製備 46 3.2.1 甲醛與氘代甲醛之氣體製備 46 3.2.2 純水與重水之氣體製備 46 3.3 氣態紅外吸收光譜之測量流程 46 3.3.1 實驗前置作業 46 3.3.2 樣品分壓之檢量線測量(以甲醛氣體為例) 47 3.3.3 混合樣品之光譜測量 47 3.4 傅立葉轉換紅外光譜儀參數設定 47 參考文獻 52 第四章 理論計算與光譜模擬 53 4.1 最佳化結構與平衡結構之轉動常數 53 4.2 絕對能量與異構物布居分佈 53 4.3 振動基態與第一振動激態之轉動常數 54 4.4 非簡諧振動波數與偶極矩導數 54 4.5 光譜模擬 55 參考文獻 73 第五章 結果與討論 74 5.1 樣品分壓之檢量線 74 5.2 CH2O / H2O混合樣品之紅外吸收光譜 74 5.2.1 CH2(OH)2之吸收譜帶分析 74 5.2.2 OCO非對稱及對稱伸縮振動模之振轉動譜帶模擬 75 5.3 CD2O / H2O混合樣品之紅外吸收光譜 76 5.3.1 CD2(OH)2之吸收譜帶分析 76 5.3.2 COH彎曲振動模與CD2搖擺振動模之振轉動譜帶模擬 76 5.4 CH2O / D2O與CD2O / D2O混合樣品之紅外吸收光譜 77 5.4.1 CH2(OD)2之吸收譜帶分析 77 5.4.2 CD2(OD)2之吸收譜帶分析 77 參考文獻 88 第六章 結論 89 附錄 A

    第一章
    [1] Li, X.; Wang, S.; Zhou, R.; Zhou, B. Urban Atmospheric Formaldehyde Concentrations Measured by a Differential Optical Absorption Spectroscopy Method. Environ. Sci.: Process. Impacts 2014, 16, 291–297.
    [2] Li, M.; Li, Q.; Nantz, M. H.; Fu, X.-A. Analysis of Carbonyl Compounds in Ambient Air by a Microreactor Approach. ACS Omega 2018, 3, 6764–6769.
    [3] Röth, E.-P.; Ehhalt, D. H. A Simple Formulation of the CH2O Photolysis Quantum Yields. Atmos.Chem. Phys. 2015, 15, 7195–7202.
    [4] Tatum Ernest, C.; Bauer, D.; Hynes, A. J. Radical Quantum Yields from Formaldehyde Photolysis in the 30400–32890 cm–1 (304–329 nm) Spectral Region: Detection of Radical Photoproducts Using Pulsed Laser Photolysis–Pulsed Laser Induced Fluorescence. J. Phys. Chem. A 2012, 116, 6983–6995.
    [5] Timonen, R. S.; Ratajczak, E.; Gutman, D. Kinetics of the Reactions of the Formyl Radical with Oxygen, Nitrogen Dioxide, Chlorine, and Bromine. J. Phys. Chem. 1988, 92, 651–655.
    [6] Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.; Hampson, R. F. Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, 2006.
    [7] Igawa, M.; Munger, J. W.; Hoffmann, M. R. Analysis of Aldehydes in Cloud and Fogwater Samples by HPLC with a Postcolumn Reaction Detector. Environ. Sci. Technol. 1989, 23, 556–561.
    [8] Adewuyi, Y. G.; Cho, S.-Y.; Tsay, R.-P.; Carmichael, G. R. Importance of Formaldehyde in Cloud Chemistry. Atmos. Environ. 1984, 18, 2413–2420.
    [9] Toda, K.; Yunoki, S.; Yanaga, A.; Takeuchi, M.; Ohira, S.-I.; Dasgupta, P. K. Formaldehyde Content of Atmospheric Aerosol. Environ. Sci. Technol. 2014, 48, 6636–6643.
    [10] Chameides, W. L.; Davis, D. D. Aqueous-Phase Source of Formic Acid in Clouds. Nature 1983, 304, 427–429.
    [11] Sanhueza, E.; Ferrer, Z.; Romero, J.; Santana, M. HCHO and HCOOH in Tropical Rains. Ambio 1991, 20, 115–118.
    [12] Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 88, 2006.
    [13] World Health Organization. Regional Office for Europe. WHO guidelines for indoor air quality: selected pollutants.
    [14] Priha, E.; Liesivuori, J.; Santa, H.; Laatikainen, R. Reactions of Hydrated Formaldehyde in Nasal Mucus. Chemosphere 1996, 32, 1077–1082.
    [15] Parrish, D. D.; Ryerson, T. B.; Mellqvist, J.; Johansson, J.; Fried, A.; Richter, D.; Walega, J. G.; Washenfelder, R. A.; de Gouw, J. A.; Peischl, J.; Aikin, K. C.; McKeen, S. A.; Frost, G. J.; Fehsenfeld, F. C.; Herndon, S. C. Primary and Secondary Sources of Formaldehyde in Urban Atmospheres: Houston Texas Region. Atmos. Chem. Phys. 2012, 12, 3273–3288.
    [16] Su, W.; Liu, C.; Hu, Q.; Zhao, S.; Sun, Y.; Wang, W.; Zhu, Y.; Liu, J.; Kim, J. Primary and Secondary Sources of Ambient Formaldehyde in the Yangtze River Delta Based on Ozone Mapping and Profiler Suite (OMPS) Observations. Atmos. Chem. Phys. 2019, 19, 6717–6736.
    [17] Lee, M.; Heikes, B. G.; Jacob, D. J.; Sachse, G.; Anderson, B. Hydrogen Peroxide, Organic Hydroperoxide, and Formaldehyde as Primary Pollutants from Biomass Burning. J. Geophys. Res. 1997, 102, 1301–1309.
    [18] Luecken, D. J.; Hutzell, W. T.; Strum, M. L.; Pouliot, G. A. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling. Atmos. Environ. 2012, 47, 477–490.
    [19] Wolfe, G. M.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; de Gouw, J. A.; Gilman, J. B.; Graus, M.; Hatch, C. D.; Holloway, J.; Horowitz, L. W.; Lee, B. H.; Lerner, B. M.; Lopez-Hilifiker, F.; Mao, J.; Marvin, M. R.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Warneke, C. Formaldehyde Production from Isoprene Oxidation across NOx Regimes. Atmos. Chem. Phys. 2016, 16, 2597–2610.
    [20] Salthammer, T. Formaldehyde Sources, Formaldehyde Concentrations and Air Exchange Rates in European Housings. Build. Environ. 2019, 150, 219–232.
    [21] llou, L.; El Maimouni, L.; Le Calvé, S. Henry’s Law Constant Measurements for Formaldehyde and Benzaldehyde as a Function of Temperature and Water Composition. Atmos. Environ. 2011, 45, 2991–2998.
    [22] Sander, R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981.
    [23] Winkelman, J. G. M.; Voorwinde, O. K.; Ottens, M.; Beenackers, A. A. C. M.; Janssen, L. P. B. M. Kinetics and Chemical Equilibrium of the Hydration of Formaldehyde. Chem. Eng. Sci. 2002, 57, 4067–4076.
    [24] Rivlin, M.; Eliav, U.; Navon, G. NMR Studies of the Equilibria and Reaction Rates in Aqueous Solutions of Formaldehyde. J. Phys. Chem. B 2015, 119, 4479–4487.
    [25] Lebrun, N.; Dhamelincourt, P.; Focsa, C.; Chazallon, B.; Destombes, J. L.; Prevost, D. Raman Analysis of Formaldehyde Aqueous Solutions as a Function of Concentration. J. Raman Spectrosc. 2003, 34, 459–464.
    [26] Boyer, I. J.; Heldreth, B.; Bergfeld, W. F.; Belsito, D. V.; Hill, R. A.; Klaassen, C. D.; Liebler, D. C.; Marks, J. G.; Shank, R. C.; Slaga, T. J.; Snyder, P. W.; Andersen, F. A. Amended Safety Assessment of Formaldehyde and Methylene Glycol as Used in Cosmetics. Int. J. Toxicol. 2013, 32, 5–32.
    [27] Matubayasi, N.; Morooka, S.; Nakahara, M.; Takahashi, H. Chemical Equilibrium of Formaldehyde and Methanediol in Hot Water: Free-Energy Analysis of the Solvent Effect. J. Mol. Liq. 2007, 134, 58–63.
    [28] Long, B.; Tan, X.-F.; Chang, C.-R.; Zhao, W.-X.; Long, Z.-W.; Ren, D.-S.; Zhang, W.-J. Theoretical Studies on Gas-Phase Reactions of Sulfuric Acid Catalyzed Hydrolysis of Formaldehyde and Formaldehyde with Sulfuric Acid and H2SO4···H2O Complex. J. Phys. Chem. A 2013, 117, 5106–5116.
    [29] Kumar, M.; Francisco, J. S. The Role of Catalysis in Alkanediol Decomposition: Implications for General Detection of Alkanediols and Their Formation in the Atmosphere. J. Phys. Chem. A 2015, 119, 9821–9833.
    [30] Hastings, W. P.; Koehler, C. A.; Bailey, E. L.; De Haan, D. O. Secondary Organic Aerosol Formation by Glyoxal Hydration and Oligomer Formation: Humidity Effects and Equilibrium Shifts during Analysis. Environ. Sci. Technol. 2005, 39, 8728–8735.
    [31] Hazra, M. K.; Francisco, J. S.; Sinha, A. Gas Phase Hydrolysis of Formaldehyde To Form Methanediol: Impact of Formic Acid Catalysis. J. Phys. Chem. A 2013, 117, 11704–11710.
    [32] Loeffler, K. W.; Koehler, C. A.; Paul, N. M.; De Haan, D. O. Oligomer Formation in Evaporating Aqueous Glyoxal and Methyl Glyoxal Solutions. Environ. Sci. Technol. 2006, 40, 6318–6323.
    [33] Jayachadran, S.; Khetan, D.; Pestonjamasp, K.; Sharma, A.; Joshi, G. A Review on Biological Building Blocks and Its Applications in Nanotechnology. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 810, 012004.
    [34] Garrod, R. T.; Widicus Weaver, S. L. Simulations of Hot-Core Chemistry. Chem. Rev. 2013, 113, 8939–8960.
    [35] Garrod, R. T.; Weaver, S. L. W.; Herbst, E. Complex Chemistry in Star-Forming Regions: An Expanded Gas-Grain Warm-up Chemical Model. Astrophys. J. 2008, 682, 283.
    [36] Barrientos, C.; Redondo, P.; Martínez, H.; Largo, A. Computational Prediction of the Spectroscopic Parameters of Methanediol, an Elusive Molecule for Interstellar Detection. Astrophys. J. 2014, 784, 132.
    [37] Hays, B. M.; Widicus Weaver, S. L. Theoretical Examination of O(1D) Insertion Reactions to Form Methanediol, Methoxymethanol, and Aminomethanol. J. Phys. Chem. A 2013, 117, 7142–7148.
    [38] Gaca-Zając, K. Z.; Smith, B. R.; Nordon, A.; Fletcher, A. J.; Johnston, K.; Sefcik, J. Investigation of IR and Raman Spectra of Species Present in Formaldehyde-Water-Methanol Systems. Vib. Spectrosc. 2018, 97, 44–54.
    [39] Lugez, C.; Schriver, A.; Levant, R.; Schriver-Mazzuoli, L. A. Matrix-Isolation Infrared Spectroscopic Study of the Reactions of Methane and Methanol with Ozone. Chem. Phys. 1994, 181, 129–146.
    [40] Kent, D. R.; Widicus, S. L.; Blake, G. A.; Goddard, W. A. A Theoretical Study of the Conversion of Gas Phase Methanediol to Formaldehyde. J. Chem. Phys. 2003, 119, 5117–5120.

    第二章
    [1] Griffiths, P. R.; Haseth, J. A. Fourier Transform Infrared Spectrometry, 2nd., 2007 Wiley.
    [2] Kauppinen, J.; Partanen, J. Fourier Transform in Spectroscopy, 2011 Wiley.
    [3] Bernath, P. F. Encyclopedia of Analytical Science, 2nd.: Fourier Transform Techniques, 2005 Elsevier.
    [4] Wartewig, S. IR and Raman Spectroscopy:Fundamental Processing, 2005 Wiley.
    [5] Fellgett, P.B. — les principes généraux des méthodes nouvelles en spectroscopie interférentielle - A propos de la théorie du spectromètre interférentiel multiplex. J. Phys. Radium. 1958, 19, 187–191.
    [6] Jacquinot, P. The Luminosity of Spectrometers with Prisms, Gratings, or Fabry-Perot Etalons. J. Opt. Soc. Am. 1954, 44, 761–765.
    [7] Jacquinot, P. New Developments in Interference Spectroscopy. Rep. Prog. Phys. 1960, 23, 267.
    [8] Connes, J.; Connes, P. Near-Infrared Planetary Spectra by Fourier Spectroscopy. I. Instruments and Results. J. Opt. Soc. Am. 1966, 56, 896–910.
    [9] Shai, Y. ATR-FTIR Studies in Pore Forming and Membrane Induced Fusion Peptides. Biochim. Biophys. Acta (BBA) – Biomemb. 2013, 1828, 2306–2313.
    [10] Prati, S.; Joseph, E.; Sciutto, G.; Mazzeo, R. New Advances in the Application of FTIR Microscopy and Spectroscopy for the Characterization of Artistic Materials. Acc. Chem. Res. 2010, 43, 792–801.
    [11] Mertz, L. Transformations in Optics, 1965 Wiley.
    [12] Mertz, L. Auxiliary Computation for Fourier Spectrometry. Infrared Phys. 1967, 7, 17–23.
    [13] Hollas, J. Basic Atomic and Molecular Spectroscopy, 2002 Wiley-Interscience.
    [14] Bernath, P. F. Spectra of Atoms and Molecules, 1995 Oxford University Press.
    [15] Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian, Inc., Wallingford CT, 2016.
    [16] Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.
    [17] Lee, C.; Yang, W.; Parr, R. G. Development of the Colic-Salvetti Correlation-energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789.
    [18] Dunning, Jr., T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.
    [19] Woon, D. E.; Dunning, Jr., T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98, 1358–1371.
    [20] Western, C. M. PGOPHER: A Program for Simulating Rotational, Vibrational and Electronic Spectra. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 221–242.

    第三章
    [1] Yates, J. T.; Madey, T. E.; Dresser, M. J. Adsorption and Decomposition of Formaldehyde on Tungsten (100) and (111) Crystal Planes. J. Catal. 1973, 30, 260–275.
    [2] Munday, E. B.; Mullins, J. C.; Edie, D. D. Vapor Pressure Data for Toluene, 1-Pentanol, 1-Butanol, Water, and 1-Propanol and for the Water and 1-Propanol System from 273.15 to 323.15 K J. Chem. Eng. Data 1980, 25, 191–194.

    第四章
    [1] Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian, Inc., Wallingford CT, 2016.
    [2] Becke, A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652.
    [3] Lee, C.; Yang, W.; Parr, R. G. Development of the Colic-Salvetti Correlation-energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789.
    [4] Dunning, Jr., T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.
    [5] Woon, D. E.; Dunning, Jr., T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98, 1358–1371.
    [6] Barrientos, C.; Redondo, P.; Martínez, H.; Largo, A. Computational Prediction of the Spectroscopic parameters of Methanediol, an Elusive Molecule for Interstellar Detection. Astrophys. J. 2014, 784, 132.
    [7] Hays, B. M.; Weaver, S. L. W. Theoretical Examination of O(1D) Insertion Reactions to Form Methanediol, Methoxymethanol, and Aminomethanol. J. Phys. Chem. A 2013, 117, 7142−7148.
    [8] Western, C. M. PGOPHER: A Program for Simulating Rotational, Vibrational and Electronic Spectra. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 221–242.

    第五章
    [1] Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume I, National Bureau of Standards, 1972, 1–160.
    [2] Barrientos, C.; Redondo, P.; Martínez, H.; Largo, A. Computational Prediction of the Spectroscopic Parameters of Methanediol, an Elusive Molecule for Interstellar Detection. Astrophys. J. 2014, 784, 132.
    [3] Lugez, C.; Schriver, A.; Levant, R.; Schriver-Mazzuoli, L. A. Matrix-Isolation Infrared Spectroscopic Study of the Reactions of Methane and Methanol with Ozone. Chem. Phys. 1994, 181, 129–146.
    [4] Western, C. M. PGOPHER: A Program for Simulating Rotational, Vibrational and Electronic Spectra. J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 221–242.

    QR CODE