研究生: |
李唐安 LI, TANG-AN |
---|---|
論文名稱: |
NACA0012高攻角下之受力與渦流場分析 Analysis of forces and vortex structure of NACA 0012 at higher angle of attack |
指導教授: |
張敬
Chang, Ching |
口試委員: |
楊佩良
Yang, Patricia J. 陳竺博淵 Tan, Zu Puayen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 翼前緣渦流 、NACA0012 、紊流 、層流 |
外文關鍵詞: | leading-edge vortex, NACA0012, turbulence flow, laminar flow |
相關次數: | 點閱:31 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在觀察層流場和紊流場不同攻角下表面渦流與機翼受力的變化,阻力在低攻角時主要由壁面剪應力造成,高攻角時渦流產生絕大部分的阻力,而升力主要都是由渦流產生,另外相較於紊流場,壁面剪應力在層流場情況下對升阻力有比較明顯影響。翼前緣渦流渦度通量越高代表其環流越大,而攻角越大渦度通量越大,這讓翼前緣渦流能產生更多升阻力。尾流的渦流對數和升阻力的震盪行為有關,當渦流對數只有一對時,升阻力只會有一種震盪頻率,若出現兩對時,升阻力的頻譜圖會出現低強度的雜訊。
We study the aerodynamic forces and the contributions of vorticity distribution for NACA0012 at different angles of attack. Both laminar flow and turbulent flow are investigated. At low angles of attack, the drag is mainly caused by the wall shear stress. At high angles of attack, vortices generate the majority of the drag. Lift is mainly generated by vortices. The boundary layer has a more significant influence on lift and drag in laminar flow conditions. The higher the vorticity flux into the leading-edge vortex, the greater the circulation, and the vorticity flux increases when the the angle of attack increased, which makes the leading-edge vortex generate more lift and drag. The oscillation behavior of lift and drag is related to the vortex pairs oberved in the wake. When there is only one pair of vortices each cycle, there is only one oscillation frequency for lift and drag. If there are two pairs in one cycle, the lift and drag spectrum will show low-intensity noise.
1. Ramesh K, Granlund K, Ol MV, Gopalarathnam A, Edwards JR. Leading-edge flow criticality as a governing factor in leading-edge vortex initiation in unsteady airfoil flows. Theoretical and Computational Fluid Dynamics 2018;32(2):109-136.
2. Deparday J, He X, Eldredge JD, Mulleners K, Williams DR. Experimental quantification of unsteady leading-edge flow separation. Journal of Fluid Mechanics 2022;941:A60.
3. Hernandez Gelado P, Ramesh KK. A reduced-order discrete-vortex method for flows with leading-edge vortex shedding. 2022 Jun 27-Jul 1; Chicago, IL. p 4105.
4. Kurtulus DF. On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at Re=1000. International Journal of Micro Air Vehicles 2015;7(3):301-326.
5. Zhang W, Samtaney R. BiGlobal linear stability analysis on low-Re flow past an airfoil at high angle of attack. Physics of Fluids 2016;28(4):19.
6. Di Ilio G, Chiappini D, Ubertini S, Bella G, Succi S. Fluid flow around NACA 0012 airfoil at low-Reynolds numbers with hybrid Lattice Boltzmann method. Computers & Fluids 2018;166:200-208.
7. Yanovych V, Duda D, Uruba V, Kosiak P. The structure of turbulent flow behind the NACA 0012 airfoil at high angles of attack and low Reynolds number. 2021 Sep 07-09; Pilsen, Czech Republic.
8. Eisenbach S, Friedrich R. Large-eddy simulation of flow separation on an airfoil at a high angle of attack and Re=10^5 using Cartesian grids. Theoretical and Computational Fluid Dynamics 2008;22(3-4):213-225.
9. Ohtake T, Nakae Y, Motohashi T. Nonlinearity of the aerodynamic characteristics of NACA0012 aerofoil at low Reynolds numbers. Japan Society of Aeronautical Space Sciences 2007;55(644):439-445.
10. Wang S, Zhou Y, Alam MM, Yang H. Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers. Physics of Fluids 2014;26(11).
11. Chiu T-Y, Tseng C-C, Chang C-C, Chou Y-J. Vorticity forces of coherent structures on the NACA0012 aerofoil. Journal of Fluid Mechanics 2023;974:A52.
12. Chang C-C. Potential flow and forces for incompressible viscous flow. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 1992;437(1901):517-525.
13. Spalart PR, Allmaras SR. A One-equation turbulence model for aerodynamic flows. Recherche Aerospatiale 1994(1):5-21.
14. Menter FR. Two-equation eddy-viscosity Turbulence models for engineering applications. AIAA Journal 1994;32(8):1598-1605.
15. Panton RL. Incompressible flow. John Wiley & Sons; 2024.
16. Güney M, Kurtulus DF. Effect of Reynolds number on NACA 0012 airfoil at low Reynolds numbers. 12th Ankara International Aerospace Conference. Ankara Turkey2023.
17. Winslow J, Otsuka H, Govindarajan B, Chopra I. Basic understanding of airfoil characteristics at low Reynolds numbers (10^4–10^5). Journal of Aircraft 2018;55(3):1050-1061.