研究生: |
卓思潔 Chuo, Szu-Chieh |
---|---|
論文名稱: |
基於韋伯分配下之非常態製程能力指標比較與信賴區間建構 Comparison and Interval Estimation of Non-normal Process Capability Indices under Weibull Distribution |
指導教授: |
吳建瑋
Wu, Chien-Wei |
口試委員: |
張英仲
蘇明鴻 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 貝氏方法 、馬可夫鏈蒙地卡羅 、複式抽樣法 、信賴區間 、製程良率 |
外文關鍵詞: | Bayesian approach, Markov Chain Monte Carlo, Bootstrap resampling, Confidence intervals, Process yield |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,產品品質是現代消費者選擇產品的重要根據之一,也是企業增強自身競爭力不容忽視的環節,因此,產品的品質管理顯得越趨重要。製程能力指標是一個被廣泛使用來改善品質的品質管理工具,然而,傳統的製程能力指標如Cp、Cpk 等都是基於常態分配的假設之下,若是在製程為非常態的情況下使用,會有錯估的情形發生。因此,本研究選擇了韋伯分配為研究主軸,針對在韋伯分配下的非常態製程能力指標使用情形作分析。
研究第一部分比較並分析多個非常態製程能力指標,包含C_Npk、C'_Npk 、C_Npkg、C_NpkG、C_'NpkG 等,在韋伯分配的情境下的使用情形,評估各指標的穩定性以及其是否能有效反映良率好壞。接著,針對指標建構其信賴區間,在此本研究使用貝氏方法來建構區間,並以傳統的無母數方法之複式抽樣法進行比較。貝氏方法結合了馬可夫鏈蒙地卡羅技巧,針對韋伯分配參數進行多次迭代並建構指標之信賴區間,而複式抽樣法則是選擇了標準型複式抽樣法、百分位點複式抽樣法、偏誤修正百分位點複式抽樣法三種計算方式。研究結果顯示,本研究所發展之馬可夫鏈蒙地卡羅方法在涵蓋率與平均寬度兩部分皆有更好的信賴區間建構效果。
Owing to advances in technology, the quality of the product is an important factor for consumers and also the essential factor for a company to enhance their competitiveness. Process capability indices (PCIs) are considered to be useful quality measurement tools. However, the traditional PCIs including Cp and Cpk are appropriate for normal distribution. When the distribution of a process is non-normal, these PCIs often lead to erroneous interpretation. As the result, in this study, we focus on the non-normal process capability indices for Weibull distribution, analyze if these non-normal PCIs are suitable for Weibull distribution.
In the first part of this study, five non-normal PCIs, including C_Npk, C'_Npk, C_Npkg, C_NpkG and C_'NpkG, are compared under Weibull distribution and we also measure each of them to find the most stable and suitable one. In the second part of this study, we use Bayesian method and integrate it with Markov Chain Monte Carlo technique to construct confidence intervals. Then, we compare them with traditional Bootstrap sampling method. For the Bootstrap sampling technique, we use three types of Bootstrap interval estimation methods. Finally, we found out that MCMC technique performed better in both coverage probability and average width.
1. Bernardo, J. (1993). Bayesian theory (0471924164). Retrieved from
2. Box, G. E., & Tiao, G. C. (2011). Bayesian Inference in Statistical Analysis (Vol. 40): John Wiley & Sons.
3. Chan, L., Cheng, S. W., & Spiring, F. A. (1988). A new measure of process capability. Journal of Quality Technology, 20(3), 162-175.
4. Chang, P.-L., & Lu, K.-H. (1994). PCI calculations for any shape of distribution with percentile. Quality World Technical Supplement, 110-114.
5. Cheng, S. W., & Spiring, F. A. (1989). Assessing process capability: a Bayesian approach. IIE Transactions, 21(1), 97-98.
6. Clements, J. A. (1989). Process capability calculations, for non-normal distributions. Quality Progress, 22, 95-100.
7. David, H. (1968). Miscellanea: Gini's mean difference rediscovered. Biometrika, 55(3), 573-575.
8. Downton, F. (1966). Linear estimates with polynomial coefficients. Biometrika, 53(1/2), 129-141.
9. Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, 7(1), 1-26.
10. Efron, B. (1981). Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika, 68(3), 589-599.
11. Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association, 82(397), 171-185.
12. Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37(1), 36-48.
13. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 54-75.
14. Franklin, L. A. (1992). Bootstrap lower confidence limits for capability indices. Journal of Quality Technology, 24, 196-210.
15. Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85(410), 398-409.
16. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, (6), 721-741.
17. Gilks, W. R. (2005). Markov chain monte carlo. Encyclopedia of Biostatistics.
18. Gilks, W. R., Best, N., & Tan, K. (1995). Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 455-472.
19. Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov Chain Monte Carlo in Practice: CRC press.
20. Gilks, W. R., & Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 337-348.
21. Gini, C. (1912). Variabilità e mutabilità. Contributi allo studio dele relazioni e delle distribuzioni statistiche. Studi Economico-Giuridici della Università di Cagliari.
22. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.
23. Huang, P., & Hwang, T. (2005). The Inference of Gini's Mean Difference. International Journal of Pure and Applied Mathematics, 25(1), 39.
24. Juran, J. M. (1974). Basic Concepts. Quality Control Handbook, 2.
25. Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, 18(1), 41-52.
26. Kashif, M., Aslam, M., Al-Marshadi, A. H., & Jun, C.-H. (2016). Capability indices for non-normal distribution using Gini’s mean difference as measure of variability. IEEE Access, 4, 7322-7330.
27. Kashif, M., Aslam, M., Rao, G. S., AL-Marshadi, A. H., & Jun, C.-H. (2017). Bootstrap Confidence Intervals of the Modified Process Capability Index for Weibull distribution. Arabian Journal for Science and Engineering, 1-9.
28. Kass, R. E., & Wasserman, L. (1996). The selection of prior distributions by formal rules. Journal of the American Statistical Association, 91(435), 1343-1370.
29. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087-1092.
30. Pearn, W., & Chen, K. (1995). Estimating process capability indices for non‐normal pearsonian populations. Quality and Reliability Engineering International, 11(5), 386-388.
31. Pearn, W., & Chen, K. (1997). Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing. Microelectronics Reliability, 37(12), 1853-1858.
32. Pearn, W., & Kotz, S. (1994). Application of Clements' method for calculating second-and third-generation process capability indices for non-normal pearsonian populations. Quality Engineering, 7(1), 139-145.
33. Shiau, J. J. H., Chiang, C. T., & Hung, H. N. (1999). A Bayesian procedure for process capability assessment. Quality and Reliability Engineering International, 15(5), 369-378.
34. Somerville, S. E., & Montgomery, D. C. (1996). Process capability indices and non-normal distributions. Quality Engineering, 9(2), 305-316.
35. Wu, C.-W., Pearn, W., & Kotz, S. (2009). An overview of theory and practice on process capability indices for quality assurance. International Journal of Production Economics, 117(2), 338-359.
36. Yitzhaki, S. (2003). Gini’s mean difference: A superior measure of variability for non-normal distributions. Metron, 61(2), 285-316.