研究生: |
羅振傑 |
---|---|
論文名稱: |
高爐燃燒尾氣之二氧化碳捕捉溶劑評估 Solvent Assessment of CO2 Capture from Blast Furnace Vent |
指導教授: | 鄭西顯 |
口試委員: |
錢義隆
張玨庭 汪上曉 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | CO2捕獲 、化學吸收法 、氨水 、旋轉床 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「溫室效應」為工業革命以來全球平均溫度明顯上升之主要原因,造成「溫室效應」最可能原因之一為石化燃料大量使用使得大氣層中CO2濃度明顯增加,為了抑制CO2濃度攀升,「節能減碳」已成為國家能源環境政策發展之重點項目。為此我們於鋼鐵廠內建立吸收氣提實驗工場,應用各種吸收劑作為相關研究之依據,並提供製程改善方法以達到節能效果。
目前本研究成果為下列:
1. 分別使用3 wt.%氨水、煤化學工廠氨水及7 wt.%氨水在固定床進行二氧化碳實驗,煤化學工廠氨水的捕獲效率小於3 wt.%氨水,兩者氨水的捕獲效率均無法達到90 % vol.,將氨水濃度提升至7 wt.%已經可以達到捕獲效率90 % vol.。氨水的總質傳係數相對於醇胺的總質傳係數小,由於超重力旋轉床((Rotating packed bed, RPB))被研究出可以提升氣液接觸表面積,將3 wt.%氨水在固定床及旋轉床進行兩者二氧化碳捕獲效率比較,發現兩者捕獲效率相近,但旋轉床的體積為固定床的體積1/3倍。
2. 實驗內使用氨水於RPB進行CO2吸收實驗,分別對於改變氣體流率、液體流率及旋轉床轉速對於CO2捕獲效率影響。
3. 實驗室內架設小型填充床吸收示範設備,以水吸收NH3以達到填充塔出口氨氣濃度低於25 ppm的目標;並用此設備探討塔高與出口氨氣濃度的關係。
[1] Global CCS Insitute, The Global Status of CCS :Global CCS Insitute, 2012.
[2] IEA, Key World Energy Statistics 2012: IEA.
[3] 徐恆文, "二氧化碳的捕獲與分離," 科學發展, vol. 413, 2007.
[4] A. A. Olajire, "CO2 capture and separation technologies for end-of-pipe applications – A review," Energy, vol. 35, pp. 2610-2628, 2010.
[5] M. Caplow, "Kinetics of carbamate formation and breakdown," Journal of the American Chemical Society, vol. 90, pp. 6795-6803, 1968.
[6] P. V. Danckwerts, "Reaction of CO2 with Ethanolamines," Chemical Engineering Science, vol. 34, pp. 443-446, 1979.
[7] P. Blauwhoff, G. Versteeg, and W. Van Swaaij, "A study on the reaction between CO2 and alkanolamines in aqueous solutions," Chemical Engineering Science, vol. 38, pp. 1411-1429, 1983.
[8] E. B. Rinker, S. A. Sami, and O. C. Sandall, "Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine," Chemical Engineering Science, vol. 50, pp. 755-768, 1995.
[9] T. L. Donaldson and Y. N. Nguyen, "Carbon dioxide reaction kinetics and transport in aqueous amine membranes," Industrial & Engineering Chemistry Fundamentals, vol. 19, pp. 260-266, 1980.
[10] G. Puxty, R. Rowland, and M. Attalla, "Comparison of the rate of CO2 absorption into aqueous ammonia and monoethanolamine," Chemical Engineering Science, vol. 65, pp. 915-922, 2010.
[11] J. T. Yeh, K. P. Resnik, K. Rygle, and H. W. Pennline, "Semi-batch absorption and regeneration studies for CO2 capture by aqueous ammonia," Fuel Processing Technology, vol. 86, pp. 1533-1546, 2005.
[12] K. Han, C. K. Ahn, M. S. Lee, C. H. Rhee, J. Y. Kim, and H. D. Chun, "Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization," International Journal of Greenhouse Gas Control, vol. 14, pp. 270-281, 2013.
[13] G. Busca and C. Pistarino, "Abatement of ammonia and amines from waste gases: a summary," Journal of Loss Prevention in the Process Industries, vol. 16, pp. 157-163, 2003.
[14] V. Darde, K. Thomsen, W. J. M. van Well, and E. H. Stenby, "Chilled ammonia process for CO2 capture," International Journal of Greenhouse Gas Control, vol. 4, pp. 131-136,2010.
[15] V. Darde, K. Thomsen, W. J. M. van Well, and E. H. Stenby, "Chilled ammonia process for CO2 capture," Energy Procedia, vol. 1, pp. 1035-1042, 2009.
[16] C. H. Rhee, J. Y. Kim, K. Han, C. K. Ahn, and H. D. Chun, "Process analysis for ammonia-based CO2 capture in ironmaking industry," Energy Procedia, vol. 4, pp. 1486-1493, 2011.
[17] A. C. Yeh and H. Bai, "Comparison of ammonia and monoethanolamine solvents to reduce CO2 greenhouse gas emissions," Science of The Total Environment, vol. 228, pp. 121-133,1999.
[18] F. Alix, J. Duncan, and C. McLarnon, "Removal of carbon dioxide from flue gas streams using mixed ammonium/alkali solutions," Google Patents, 2008.
[19] H. Yu, S. Morgan, A. Allport, A. Cottrell, T. Do, J. McGregor, et al., "Results from trialling aqueous ammonia based post combustion capture in a pilot plant at Munmorah," Energy Procedia, vol. 4, pp. 1294-1302, 2011.
[20] H. Yu, S. Morgan, A. Allport, A. Cottrell, T. Do, J. McGregor, et al., "Results from trialling aqueous NH3 based post-combustion capture in a pilot plant at Munmorah power station: Absorption," Chemical Engineering Research and Design, vol. 89, pp. 1204-1215, 2011.
[21] R. H. Mallinson and C. Ramshaw, "Mass transfer process," Google Patents, 1981.
[22] S. P. Singh, J. H. Wilson, R. M. Counce, A. J. Lucero, G. D. Reed, R. A. Ashworth, et al., "Removal of volatile organic compounds from groundwater using a rotary air stripper," Industrial & engineering chemistry research, vol. 31, pp. 574-580, 1992.
[23] C.-C. Lin, T.-J. Ho, and W.-T. Liu, "Distillation in a Rotating Packed Bed," Journal of chemical engineering of Japan, vol. 35, pp. 1298-1304, 2002.
[24] C.-C. Lin, W.-T. Liu, and C.-S. Tan, "Removal of carbon dioxide by absorption in a rotating packed bed," Industrial & engineering chemistry research, vol. 42, pp. 2381-2386, 2003.
[25] M. S. Jassim, G. Rochelle, D. Eimer, and C. Ramshaw, "Carbon Dioxide Absorption and Desorption in Aqueous Monoethanolamine Solutions in a Rotating Packed Bed," Industrial & Engineering Chemistry Research, vol. 46, pp. 2823-2833, 2007/04/01 2007.
[26] B.-C. Sun, X.-M. Wang, J.-M. Chen, G.-W. Chu, J.-F. Chen, and L. Shao, "Simultaneous Absorption of CO2 and NH3 into Water in a Rotating Packed Bed," Industrial & Engineering Chemistry Research, vol. 48, pp. 11175-11180, 2009/12/16 2009.
[27] G. Q. Wang, Z. C. Xu, Y. L. Yu, and J. B. Ji, "Performance of a rotating zigzag bed—A new HIGEE," Chemical Engineering and Processing: Process Intensification, vol. 47, pp. 2131-2139, 2008.
[28] W. L. McCabe, J. Smith, and P. Harriott, Unit Operations of Chemical Engineering: McGraw-Hill Education, 2005
[29] 高涵綺,"利用煤化學工廠自產氨水捕獲二氧化碳之應用(未發表碩士論文)," 化學工程研究所, 國立清華大學, 2014.