簡易檢索 / 詳目顯示

研究生: 王仁煜
Wang, Jen-Yu
論文名稱: 在低溫下的石墨烯氧化物半導體異質結構其光響應度變化
Photoresponsivity of graphene oxide semiconductor heterostructure at low temperature
指導教授: 陳正中
Chen, Jeng-Chung
口試委員: 林大欽
Ling, Dah-Chin
吳憲昌
Wu, Cen-Shawn
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 石墨烯透明閘極金屬氧化物場效電晶體光偵測器凡得瓦力異質結構庫倫阻力
外文關鍵詞: graphene, transparent gate, metal oxide semiconductor field-effect transistor, photodetector, Van der Waals force heterostructure, coulomb drag
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯的高透光率在光學元件中擁有極大的優勢,做為光偵測器的發展也引起了重大關注。在這份工作中,我們研究以環境溫度為100 K至280 K、光源波長為425 nm、565 nm、635 nm,與光源強度作為變因,量測石墨烯氧化物半導體異質結構的閘極電壓與光電流的關係。數據顯示,樣品在飽和電流區的光電流約正比於發光強度,且光電流為暗電流的106倍,有非常大的光/暗電流比。在溫度250 K時,光響應度為12 mA/W,高於以其他材料做為閘極的光偵測器,並與其他使用石墨烯做為透明閘極的光偵測器有相近的光響應度。而當溫度為150 K,能進一步提高8倍的光響應度,達到96 mA/W。


    The transparent electrodes have great advantages in optoelectronic devices, and the graphene-based photodetector has also attracted significant attention. In our work, the relationship between the gate voltage and the photocurrent of the graphene oxide semiconductor heterostructure was studied by taking the temperature(100 K–280 K), the wavelength of the light source(425, 565, 635 nm), and the intensity of the light source as parameters. The data shows that the photocurrent in the saturation current region is approximately proportional to the luminescence intensity, and the photocurrent is approximately 106 times the dark current. At room temperature, the photoresponsivity is 12 mA/W, higher than the photodetector with other materials as the gate, and similar to other photodetectors using graphene as a transparent gate. The photoresponsivity can be further up to 96 mA/W , by 8 times at 150 K.

    目錄 摘要…………………………………………………………………………………….i Abstract…………………………………………………………………………ii 致謝……………………………………………………………………………………iii 章節目錄……………………………………………………………………………iv 第一章 導論 1.1 雙層二維電子氣層間電子庫倫交互作用……………………………………………………………1 1.2 二維電子氣的光電反應………………………………………………………………………………………………3 1.3 研究動機-石墨烯與傳統二維電子系統混和光偵測器元件……………………4 第二章 背景知識-石墨烯與半導體異質界面二維電子系統 2.1 傳統半導體二維電子系統-金屬氧化物半導體場效電晶體 2.1.1 金屬氧化物半導體異質結構-界面能帶結構……………………………………………7 2.1.2 場效電晶體操作………………………………………………………………………………………………………9 2.2 本徵二維材料-石墨烯 2.2.1 石墨烯晶格與能帶結構………………………………………………………………………………………11 2.2.2 石墨烯製備與檢測………………………………………………………………………………………………14 2.2.3 石墨烯場效電晶體………………………………………………………………………………………………17 2.3 石墨烯-絕緣體界面(凡得瓦力界面) 2.3.1 二維材料異質結構………………………………………………………………………………………………18 2.3.2 二維材料垂直異質結構……………………………………………………………………………………19 第三章 石墨烯─絕緣層─半導體光偵測器 3.1 光偵測器元件特徵參數…………………………………………………………………………………………21 3.2 光電二極管與光導體光偵測器……………………………………………………………………………22 3.3 金屬─絕緣層─半導體光偵測器……………………………………………………………………………23 3.4 石墨烯─氧化物─半導體光偵測器 3.4.1 石墨烯於光學元件的應用…………………………………………………………………………………28 3.4.2 透明閘極層光偵測器……………………………………………………………………………………………29 第四章 樣品設計、製備與電性特徵 4.1 樣品設計理念與製程參數………………………………………………………………………………………31 4.2 樣品製備流程 4.2.1 黃光製程…………………………………………………………………………………………………………………32 4.2.2 石墨烯的生長…………………………………………………………………………………………………………35 4.2.3 石墨烯的轉移…………………………………………………………………………………………………………37 4.2.4 樣品打線接合…………………………………………………………………………………………………………39 4.3 樣品電性特徵 4.3.1 石墨烯拉曼光譜……………………………………………………………………………………………………39 4.3.2 樣品列表…………………………………………………………………………………………………………………42 4.3.3 金屬氧化物半導體場效電晶體數據與分析………………………………………………42 4.3.4 石墨烯氧化物半導體場效電晶體基數據與分析……………………………………51 第五章 實驗量測與結果討論 5.1 儀器架設與量測方法………………………………………………………………………………………………55 5.2 石墨烯─氧化層─半導體光偵測器數據與討論 5.2.1 光源校正 ………………………………………………………………………………………………………………57 5.2.2 不同光強度下樣品的光響應度………………………………………………………………………60 5.2.3 不同波長下樣品的光響應度……………………………………………………………………………62 5.2.4 不同溫度下樣品的光響應度……………………………………………………………………………64 5.3 石墨烯─氧化層─半導體光偵測器傳輸機制……………………………………………………66 第六章 結論與未來展望…………………………………………………………………………………………………69 第七章 參考資料………………………………………………………………………………………………………………70 附錄一 國家奈米元件實驗室送件方法與製備流程……………………………………………76

    [1] R. Willett et al., Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776 (1987).
    [2] Eisenstein, J. P. et al., S. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett. 68, 1383 (1992).
    [3] Seamons, J. A. et al., Coulomb drag in the exciton regime in electron_hole bilayers. Phys. Rev. Lett. 102, 026804 (2009).
    [4] Solomon, P. M. et al., New phenomena in coupled transport between 2D and 3D electron-gas layers. Phys. Rev. Lett. 63, 2508 (1989).
    [5] Gramila, T. J. et al., Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 66, 1216 (1991).
    [6] A. F. Croxall et al., Anomalous Coulomb Drag in Electron-Hole Bilayers. Phys. Rev. Lett. 101, 246801 (2008).
    [7] A. S. Price et al., Giant Fluctuations of Coulomb Drag in a Bilayer System. Science 316, 99 (2007).
    [8] R. Pillarisetty et al., Coulomb drag near the metal-insulator transition in two dimensions. Phys. Rev. Lett. 71, 115307 (2005).
    [9] M. Yamamoto et al., Negative Coulomb Drag in a One-Dimensional Wire. Science 313, 204 (2006).
    [10] Kim, S. et al., Coulomb drag of massless fermions in graphene. Phys. Rev. B 83, 161401 (2011).
    [11] R. V. Gorbachev et al., Strong Coulomb drag and broken symmetry in double-layer graphene. Nature Phys. 8, 896 (2012).

    [12] J. I. A. Li et al., Negative Coulomb Drag in Double Bilayer Graphene. Phys. Rev. Lett. 117, 046802 (2016)
    [13] C.-H. Zhang and Yogesh N. Joglekar, Excitonic condensation of massless fermions in graphene bilayers. Phys. Rev. B 77, 233405 (2008).
    [14] A. Gamucci et al., Anomalous low-temperature Coulomb drag in graphene-GaAs heterostructures. Nat. Commun. 5, 5824 (2014).
    [15] A. Kamgar et al., Resonance Spectroscopy of Electronic Levels in a Surface Accumulation Layer. Phys. Rev. Lett. 32, 1251 (1974).
    [16] Beinvogl, W. et al., Influence of a magnetic field on electron subbands in a surface spacecharge layer, Phys. Rev. B 14, 4274 (1976).
    [17] S. Das Sarma, Two-dimensional level broadening in the extreme quantum limit. Phys. Rev. B 23, 4592 (1981).
    [18] Nakamura, K. et al., Manybody effects in the Si metal-oxide-semiconductor inversion layer: Subband structure. Phys. Rev. B 22, 1892 (1980).
    [19] G. Abstreiter et al., Cyclotron Resonance of Electrons in an Inversion Layer on Si. Phys. Rev. Lett. 32, 104 (1974).
    [20] J. H. Davies, The Physics of Low-Dimensional Semiconductors. (1998).
    [21] B. R. Nag, Physics of Quantum Well Devices. Springer Netherlands (2000).
    [22] S. Morina et al., Transport properties of a two-dimensional electron gas dressed by light. Phys. Rev. B 91, 155312 (2015).
    [23] R. Johne et al., Entangled Photon Pairs Produced by a Quantum Dot Strongly Coupled to a Microcavity. Phys. Rev. Lett. 100, 240404 (2008).
    [24] S. Smolka et al., Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Science 346, 332 (2014).
    [25] S. E. Savelev and A. S. Alexandrov, Massless Dirac fermions in a laser field as a counterpart of graphene superlattices. Phys. Rev. B 84, 035428 (2011).
    [26] O. V. Kibis et al., Band gap in graphene induced by vacuum fluctuations. Phys. Rev. B 84, 195413 (2011).
    [27] R. R. Nair et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science 320, 1308 (2008).
    [28] X. Gong et al., High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325, 1665 (2009).
    [29] G. Konstantatos et al., Ultrasensitive solution-cast quantum dot photodetectors, Nature 442, 180 (2006).
    [30] Dong-Wook Park et al., Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat. Commun. 5, 5258 (2014).
    [31] Saran, R. et al., Lead sulphide nanocrystal photodetector technologies. Nature Photon. 10, 81 (2016).
    [32] Lin, Q. et al., Filterless narrowband visible photodetectors. Nature Photon. 9, 687 (2015).
    [33] Baeg, K.-J. et al., Organic Light Detectors: Photodiodes and Phototransistors. Adv. Mater. 25, 4267 (2013).
    [34] Koppens, F. H. L. et al., Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nature Nanotech. 9, 780 (2014).
    [35] Kenji Nomura et al., Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science 300, 23 (2003).
    [36] F. Bonaccorso et al., Graphene photonics and optoelectronics. Nature Photon. 4, 611 (2010).
    [37] J. Hicks et al., A wide-bandgap metal–semiconductor–metal nanostructure made entirely from graphene. Nature Phys. 9, 49 (2013).
    [38] 楊賜麟,半導體物理與元件4/e,東華出版社 (2013).
    [39] P. R. Wallace, The Band Theory of Graphite. Phys. Rev. 71, 622 (1947).
    [40] P.A. vouris, Graphene: Electronic and Photonic Properties and Devices. Nano Lett. 10, 4285 (2010).
    [41] A. Reina et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).
    [42] K. S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).
    [43] P. W. Sutter et al., Epitaxial graphene on ruthenium. Nat. Mater. 7, 406 (2008).
    [44] Malard L. M. et al., Raman spectroscopy in graphene. Physics Reports 473, 51 (2009).
    [45] Lazzeri M. et al., Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Phys. Rev. B 78, 081406 (2008).
    [46] A. C. Ferrari et al., Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).
    [47] C. D. Dimitrakopoulos et al., Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11 (2001).
    [48] R. H. Baughman et al., Carbon Nanotubes--the Route Toward Applications. Science 297, 787 (2002).
    [49] A. V. Butenko et al., Hall constant in quantum-sized semimetal Bi films: Electric field effect influence. J. Appl. Phys. 88, 2634 (2000).
    [50] Yang L. et al., Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 99, 186801 (2007).
    [51] Szafranek B. N. et al., Electrical observation of a tunable band gap in bilayer graphene nanoribbons at room temperature. Appl. Phys. Lett. 96, 112103 (2010).
    [52] Ponomarenko, L. A. et al., Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958 (2011).
    [53] Britnell, L. et al., Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947 (2012).
    [54] Kumar, S. B., Seol, G. & Guo, J., Modeling of a vertical tunneling graphene heterojunction field-effect transistor. Appl. Phys. Lett. 101, 033503 (2012).
    [55] Yang, H. et al., Graphene barristor a triode device with a gate-controlled schottky barrier. Science 336, 1140 (2012).
    [56] Britnell, L. et al., Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707 (2012).
    [57] Samantha Bruzzone et al., Vertical transport in graphene-hexagonal boron nitride heterostructure devices. Scientific Reports 5, 14519 (2015).
    [58] G. T. Reed et al., Silicon optical modulators. Nature Photon. 4, 660 (2010).
    [59] C.-H. Lin et al., A Comprehensive Study of Inversion Current in MOS Tunneling Diodes. IEEE Trans. Electron Devices. 48, 2125 (2001).
    [60] Vasko, F. T. et al., Photoconductivity of intrinsic graphene. Phys. Rev. B 77, 195433 (2008).
    [61] Chu-Hsuan Lin and Chee Wee Liu, Metal-Insulator-Semiconductor Photodetectors. Sensors 10, 8797 (2010).
    [62] Liu, C.W. et al., A Novel Photodetector Using MOS Tunneling Structures. IEEE. Electron. Device. Lett. 21, 307 (2000).
    [63] S.J. Young et al., ZnO-based MIS photodetectors. Sensors and Actuators A 141, 225 (2008).
    [64] Kazuo Yoshihiro et al., Anomalous behavior of a quantized Hall plateau in a high-mobility Si metal-oxide–semiconductor field-effect transistor. Phys. Rev. B 45, 14204 (1992).
    [65] A Kumar, Synthesis and biomedical applications of graphene: present and future trends (2013).
    [66] Kern (Ken) Rim et al., Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s. IEEE Trans. Electron Devices 47, 1406 (2000)
    [67] Jong-In Shim et al., Measuring the Internal Quantum Efficiency of Light-Emitting Diodes at an Arbitrary Temperature. IEEE J. Quantum Electronics 54 (2018).
    [68] M. A. Green et al., Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients. Sol. Energ. Mat. Sol. Cells 92, 1305 (2008).
    [69] Xia, F. et al., Ultrafast graphene photodetector. Nature Nanotech. 4, 839 (2009).
    [70] Gabor, N. et al., Hot Carrier–Assisted Intrinsic Photoresponse in Graphene. Science 334, 648 (2011).
    [71] Freitag, M. et al., Photoconductivity of biased graphene. Nature Photon. 7, 53 (2012).
    [72] Pospischil, A. et al., Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nature Nanotech. 9, 257 (2014).
    [73] Chiou, Y.Z et al., Metal−Oxide−Semiconductor-Structured MgZnO Ultraviolet Photodetector with High Internal Gain. J. Physical Chemistry C 114, 7169 (2010).
    [74] Hwang, J. et al., High UV/visible rejection contrast AlGaN/GaN MIS photodetectors. Thin Solid Films 498, 133 (2006).
    [75] Dacheng Wei et al., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Lett. 9, 1752 (2009).

    QR CODE