研究生: |
鄭景鴻 Cheng, Ching-Hung. |
---|---|
論文名稱: |
氣溶膠於捕獲二氧化碳製程中對乙醇胺洩漏的影響 Effect of Aerosol on MEA Slip in Capturing Carbon Dioxide |
指導教授: |
汪上曉
Wong, David Shan-Hill |
口試委員: |
康嘉麟
Kang, Jia-Lin 李恩各 Lee, En-Ko |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 二氧化碳捕獲 、氣溶膠 、乙醇胺洩漏 |
外文關鍵詞: | CO2 Capture, Aerosol, MEA emission |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在二氧化碳捕獲技術中,化學吸收法主要使用的吸收劑為醇胺類水溶液,乙醇胺為目前商業化的標準吸收劑。然而,此種醇胺水溶液為有機溶劑容易揮發,因此會被煙道氣帶至大氣中對人體及環境造成傷害。根據Khakharia, P.中的文獻1指出煙道氣中含有氮氧化物及硫氧化物所形成的細小凝結核,此凝結核為造成醇胺洩漏的主要原因,雖然吸收塔上方有加裝水洗塔降低醇胺洩漏,但是裝置並非針對氣溶膠微粒的移除,因此醇胺洩漏問題仍然存在,此外,目前尚未有系統化的方法觀測其凝結核與醇胺水溶液在吸收塔中作用的機制。因此本研究主要目的在於建立一套能夠準確測量吸收塔乙醇胺排放濃度的系統,以深入探討氣溶膠在不同吸收塔:填充床(PB)與旋轉床(RPB)中對乙醇胺洩漏的影響。
本研究中使用氣溶膠產生器產生實驗所需的氣溶膠,使用粒徑分析儀測量經由氣溶膠的粒徑分佈與微粒數目,使用攜帶式傅立葉轉換紅外光譜儀測量乙醇胺洩漏濃度。實驗結果顯示若是沒有氣溶膠通入旋轉床與填充床,乙醇胺洩漏的濃度微小到幾乎可以忽略。若是將蔗糖氣溶膠通入填充床吸收塔中,乙醇胺洩漏濃度約為400~800ppmv,乙醇胺洩漏濃度明顯的增加。使用硫酸作為產生氣溶膠的前置物通入填充床的實驗結果顯示,硫酸氣溶膠所造成的乙醇胺洩漏濃度約為1100~1400ppmv,代表酸性氣溶膠所造成的乙醇胺洩漏濃度叫中性氣溶膠高。此外,在填充床吸收塔中,乙醇胺洩漏濃度會隨著液氣比提升而增加,而在旋轉床吸收塔中趨勢則與填充床相反。
Large-scale deployment of post-combustion CO2 chemical capture, absorption by chemical solvents have been demonstrated to be possible. One of the remaining concerns is the leakage of amines, which may result in the damage to human health and the environment. Literature revealed that amine slip increases in the presence of aerosol particles in the flue gas. However, systematic investigation of the mechanism is still absent. The objective of this work is to set-up an experiment to measure the effect of aerosol on monoethanolamine (MEA) slip in different absorbers, a packed bed (PB) and a rotating packed bed (RPB). In this research, the aerosol was generated by a generator TSI-3076. A particle size analyzer TSI model 3330 was used to analyze the particle size distribution and particle counts in the aerosol created. The FTIR instrument Gasmet DX-4000 was calibrated to measure MEA concentrations in the outlet gas stream. If no aerosol was introduced into the inlet gas, MEA emissions are negligible in both absorbers. If sucrose aerosol were present in the packed bed absorber, MEA emission is about 400~800ppmv. If sulfuric acid aerosol were present in the packed bed absorber, MEA emission is about 1100~1400ppmv. An aerosol with sulfuric acid as nuclei aerosol causes more MEA emission than aerosol with sucrose as nuclei. The MEA emission increased with L/G ratio increasing in a packed bed, the trend is just opposite in RPB.
1. Khakharia, P.; Brachert, L.; Mertens, J.; Anderlohr, C.; Huizinga, A.; Fernandez, E. S.; Schallert, B.; Schaber, K.; Vlugt, T. J. H.; Goetheer, E., Understanding aerosol based emissions in a Post Combustion CO2 Capture process: Parameter testing and mechanisms. Int J Greenh Gas Con 2015, 34, 63-74.
2. IPCC, Climate Change 2014 Synthesis Report Summary for Policymakers. 2014.
3. Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D., Advances in CO(2) capture technology - The US Department of Energy's Carbon Sequestration Program. Int J Green Gas Con 2008, 2 (1), 9-20.
4. Wang, M.; Lawal, A.; Stephenson, P.; Sidders, J.; Ramshaw, C., Post-combustion CO2 capture with chemical absorption: A state-of-the-art review. Chem Eng Res Des 2011, 89 (9), 1609-1624.
5. 李寶田, 高爐氣的燃燒尾氣之二氧化碳捕捉的溶劑評估. 國立清華大學碩士論文 2012.
6. Petra Nova Carbon Capture Project. Global Carbon Capture and Storage Institute 2017.
7. Thitakamol, B.; Veawab, A.; Aroonwilas, A., Environmental impacts of absorption-based CO2 capture unit for post-combustion treatment of flue gas from coal-fired power plant. Int J Greenh Gas Con 2007, 1 (3), 318-342.
8. Fine, N. A.; Goldman, M. J.; Nielsen, P. T.; Rochelle, G. T., Managing n-nitrosopiperazine and dinitrosopiperazine. Ghgt-11 2013, 37, 273-284.
9. N. Dave, T. D., P. Jackson, P. Feron, M. Azzi, and M. Attalla, CO2 capture mongstad-project B theoretical evaluation of the potential to form and emit harmful compounds. in Task 1: Process Chemistry. The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Report 2010.
10. M. Iijima, T. N., T. Kamijyo, and S. Nakatani, MHI’s energy efficient flue gas CO2 capture technology and large scale ccs demonstration test at coal-fired power plants in USA. Mitsubishi Heavy Industries Technical Review 2011, 48, 26.
11. Kamijo, T.; Kajiya, Y.; Endo, T.; Nagayasu, H.; Tanaka, H.; Hirata, T.; Yonekawa, T.; Tsujiuchi, T., SO3 impact on amine emission and emission reduction technology. Ghgt-11 2013, 37, 1793-1796.
12. Brachert, L.; Mertens, J.; Khakharia, P.; Schaber, K., The challenge of measuring sulfuric acid aerosols: Number concentration and size evaluation using a condensation particle counter (CPC) and an electrical low pressure impactor (ELPI+). J Aerosol Sci 2014, 67, 21-27.
13. Mertens, J.; Brachert, L.; Desagher, D.; Thielens, M. L.; Khakharia, P.; Goetheer, E.; Schaber, K., ELPI+ measurements of aerosol growth in an amine absorption column. Int J Greenh Gas Con 2014, 23, 44-50.
14. Dickson, J. B. a. A., Removal of entrained liquid droplets by wire-mesh demisters. in Proceedings of the Institution of Mechanical Engineers, Conference Proceedings 1969, 195-203.
15. El-Dessouky, H. T.; Alatiqi, I. M.; Ettouney, H. M.; Al-Deffeeri, N. S., Performance of wire mesh mist eliminator. Chem Eng Process 2000, 39 (2), 129-139.
16. Khakharia, P.; Kvamsdal, H. M.; da Silva, E. F.; Vlugt, T. J. H.; Goetheer, E., Field study of a Brownian Demister Unit to reduce aerosol based emission from a Post Combustion CO2 Capture plant. Int J Greenh Gas Con 2014, 28, 57-64.
17. Srivastava, R. K.; Miller, C. A.; Erickson, C.; Jambhekar, R., Emissions of sulfur trioxide from coal-fired power plants. J Air Waste Manage 2004, 54 (6), 750-762.
18. Brown, C. A.; Hohne, P. A., Eliminating a sulfuric acid mist plume from a wet caustic scrubber on a petroleum coke calciner. Environ Prog 2001, 20 (3), 182-186.
19. Mertens, J.; Khakharia, P.; Rogiers, P.; Blondeau, J.; Lepaumier, H.; Goetheer, E.; Schallert, B.; Schaber, K.; Moretti, I., Prevention of mist formation in amine based carbon capture: field testing using a Wet ElectroStatic Precipitator (WESP) and a Gas-Gas Heater (GGH). 13th International Conference on Greenhouse Gas Control Technologies, Ghgt-13 2017, 114, 987-999.
20. Anderlohr, C.; Brachert, L.; Mertens, J.; Schaber, K., Collection and Generation of Sulfuric Acid Aerosols in a Wet Electrostatic Precipitator. Aerosol Sci Tech 2015, 49 (3), 144-151.
21. Huang, J. Y.; Wang, H. M.; Shi, Y. J.; Zhang, F.; Dang, X. Q.; Zhang, H.; Shu, Y.; Deng, S.; Liu, Y., Performance of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist. Environ Sci Pollut R 2016, 23 (19), 19219-19228.
22. Huang, J. Y.; Zhang, F.; Shi, Y. J.; Dang, X. Q.; Zhang, H.; Shu, Y.; Deng, S.; Liu, Y., Investigation of a pilot-scale wet electrostatic precipitator for the control of sulfuric acid mist from a simulated WFGD system. J Aerosol Sci 2016, 100, 38-52.
23. 劉冠廷, 氣懸膠體成長建模與實驗建立於醇胺溶液捕獲二氧化碳製程. 國立清華大學碩士論文 2017.
24. Schaber, K.; Korber, J.; Ofenloch, O.; Ehrig, R.; Deuflhard, P., Aerosol formation in gas-liquid contact devices - nucleation, growth and particle dynamics. Chem Eng Sci 2002, 57 (20), 4345-4356.
25. Imle, M.; von Harbou, E.; Brachert, L.; Schaber, K.; Hasse, H., Predicting supersaturation by rate-based simulations of reactive absorption. Chem Eng Sci 2014, 118, 41-49.
26. Fulk, S. M., Measuring and modeling aerosols in carbon dioxide capture by aqueous amines(Thesis). 2016.
27. Zhang, Y.; Kang, J. L.; Fulk, S.; Rochelle, G., Modeling Amine Aerosol Growth at Realistic Pilot Plant Conditions. 13th International Conference on Greenhouse Gas Control Technologies, Ghgt-13 2017, 114, 1045-1060.
28. da Silva, E. F.; Kolderup, H.; Goetheer, E.; Hjarbo, K. W.; Huizinga, A.; Khakharia, P.; Tuinman, I.; Mejdell, T.; Zahlsen, K.; Vernstad, K.; Hyldbakk, A.; Holten, T.; Kvamsdal, H. M.; van Os, P.; Einbu, A., Emission studies from a CO2 capture pilot plant. Ghgt-11 2013, 37, 778-783.
29. Khakharia, P.; Brachert, L.; Mertens, J.; Huizinga, A.; Schallert, B.; Schaber, K.; Vlugt, T. J. H.; Goetheer, E., Investigation of aerosol based emission of MEA due to sulphuric acid aerosol and soot in a Post Combustion CO2 Capture process. Int J Greenh Gas Con 2013, 19, 138-144.
30. Stoffregen, T.; Rigby, S.; Jovanovic, S.; Krishnamurthy, K. R., Pilot-scale demonstration of an advanced aqueous amine-based post-combustion capture technology for CO2 capture from power plant flue gases. 12th International Conference on Greenhouse Gas Control Technologies, Ghgt-12 2014, 63, 1456-1469.
31. Majeed, H.; Knuutila, H.; Hillestad, M.; Svendsen, H. F., Gas phase amine depletion created by aerosol formation and growth. Int J Greenh Gas Con 2017, 64, 212-222.
32. Majeed, H.; Knuutila, H. K.; Hillestad, M.; Svendsen, H. F., Characterization and modelling of aerosol droplet in absorption columns. Int J Greenh Gas Con 2017, 58, 114-126.
33. Majeed, H.; Svendsen, H. F., Effect of water wash on mist and aerosol formation in absorption column. Chem Eng J 2018, 333, 636-648.