研究生: |
吳孟峰 Wu, Meng-Feng |
---|---|
論文名稱: |
利用生質廢料製備電極及其在可撓性超级電容之應用 Preparation of Electrodes Through Biomass and Its Applications in Flexible Supercapacitors |
指導教授: |
戴念華
Tai, Nyan-Hwa 李紫原 Lee, Chi-Young |
口試委員: |
徐文光
Hsu, Wen-Kuang 劉偉仁 Liu, Wei-Ren |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 生質廢料 、可撓性超級電容 、花生殼 、大豆蛋白 、氧化石墨烯 |
外文關鍵詞: | Biomass, Flexible Supercapacitors, Peanut shell, Soy protein, Graphene oxide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以生質廢料當作碳源,以氫氧化鉀化學活化法來製備多孔、高比表面積的生質碳材料,利用氫氧化鉀與碳的化學反應,使材料表面的碳被反應掉,表面形成多孔的結構,並針對不同製程溫度與不同混合方法來進行比較與分析,在最佳條件下,最佳試片擁有181.4 F/g(掃描速率: 10 mV/s)與253.9 F/g(電流密度: 0.4 A/g)的比電容量。
為了能更進一步提升超級電容的表現,以氮摻雜的方式來增加擬電容儲能的效果、提升導電性,期望能提高電容值,並解決高掃描速率下,不理想的電容表現。接著再嘗試加入氧化石墨烯,希望藉由協同效應來提高材料的比表面積與電化學表現。在最佳的條件下,改良後的試片擁有214.04 F/g(掃描速率: 10 mV/s)與289.4 F/g(電流密度: 0.4 A/g)的比電容量,在5000圈循環測試下,電容值能維持在92.8%。。
為了應用於穿戴式電子器件,將改良後的最佳試片組裝成可撓性超級電容,在不同彎曲角度下擁有良好的穩定性,最後並接上發光二極管(LED)進行測試,在充電10秒後,可使其發光長達約165秒。
本實驗嘗試以低成本、簡易製程,來製作輕巧且具可撓性的高效率超級電容,並以花生殼為起始材料,充分地運用綠色能源。
This work use biomass as the starting material to synthesize the porous biochar for the application on supercapacitor after treated with the potassium hydroxide activation process. Through the chemical reaction of potassium hydroxide and carbon, the carbon on the surface will be consumed and the surface of the material will become porous. Then analyzed and compared with different activation temperature and mixing method. Under optimal conditions of activation process, the best sample performance the best specific capacitance with 181.4 F/g(scan rate: 10 mV/s) and 253.9 F/g(current density: 0.4 A/g).
To further improve the electrochemical performance, we introduced the nitrogen-doped method by adding soy protein in the best sample to increase the pseudocapacitance and improve conductivity. Also, try to fix the drawback of low capacitance at high scan rate. Next, we tried to add some graphene oxide in the biomass and hoped that we can increase specific surface area and improve electrochemical performance by the synergistic effects. Under optimal conditions, the improved sample performance the best specific capacitance with 214.04 F/g(scan rate: 10 mV/s)and 289.4 F/g(current density: 0.4 A/g). In cycling stability test, the best electrode can retained about 92.8% after 5000 cycles.
In order to apply the supercapacitor to wearable electronic device, we made the flexible supercapacitor device by assembling two electrodes. In bending angle test, the flexible supercapacitor devices can performance good stability.at different angles. Final, we connected three flexible supercapacitor devices by series to light the light-emitting diode. After charging the device 10 seconds, it can light the light-emitting diode for almost 165 seconds.
In this work, we focused on making high efficiency flexible supercapacitor device with low cost, simple process. By using the peanut shell kind of biomass to synthesis the electrode, we made full use of green biomass energy successfully.
[1] J.M. Lorenzo, P.E.S. Munekata, A.S. Sant'Ana, R.B. Carvalho, F.J. Barba, F. Toldrá, L. Mora, M.A. Trindade, Main characteristics of peanut skin and its role for the preservation of meat products, Trends in Food Science & Technology 77 (2018) 1-10.
[2] J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan, D. Mitlin, Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors, Energy & Environmental Science 8(3) (2015) 941-955.
[3] L. Zhang, X. Hu, Z. Wang, F. Sun, D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: A control/management perspective, Renewable and Sustainable Energy Reviews 81 (2018) 1868-1878.
[4] N. Sulaiman, M.A. Hannan, A. Mohamed, E.H. Majlan, W.R. Wan Daud, A review on energy management system for fuel cell hybrid electric vehicle: Issues and challenges, Renewable and Sustainable Energy Reviews 52 (2015) 802-814.
[5] A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: Technologies and materials, Renewable and Sustainable Energy Reviews 58 (2016) 1189-1206.
[6] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Conversion, Handbook of Clean Energy Systems2015, pp. 1-25.
[7] K. Jost, G. Dion, Y. Gogotsi, Textile energy storage in perspective, Journal of Materials Chemistry A 2(28) (2014) 10776-10787.
[8] J. Kang, J. Wen, S.H. Jayaram, A. Yu, X. Wang, Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes, Electrochimica Acta 115 (2014) 587-598.
[9] D.L. Chapman, LI. A contribution to the theory of electrocapillarity, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25(148) (1913) 475-481.
[10] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem Soc Rev 41(2) (2012) 797-828.
[11] Q. Ke, J. Wang, Graphene-based materials for supercapacitor electrodes – A review, Journal of Materiomics 2(1) (2016) 37-54.
[12] Z. Qiu, Y. Wang, X. Bi, T. Zhou, J. Zhou, J. Zhao, Z. Miao, W. Yi, P. Fu, S. Zhuo, Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, Journal of Power Sources 376 (2018) 82-90.
[13] Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities, Energy & Environmental Science 9(3) (2016) 729-762.
[14] D. Kang, Q. Liu, J. Gu, Y. Su, W. Zhang, D. Zhang, “Egg-Box”-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors, ACS Nano 9(11) (2015) 11225-11233.
[15] J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y.J.S. Gogotsi, Monolithic carbide-derived carbon films for micro-supercapacitors, 328(5977) (2010) 480-483.
[16] K. Wan, S. Liu, C. Zhang, L. Li, Z. Zhao, T. Liu, Y. Xie, Supramolecular Assembly of 1D Pristine Carbon Nanotubes and 2D Graphene Oxides into Macroscopic All-Carbon Hybrid Sponges for High-Energy-Density Supercapacitors, ChemNanoMat 3(6) (2017) 447-453.
[17] M. Zhi, C. Xiang, J. Li, M. Li, N.J.N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review, Nanoscale 5(1) (2013) 72-88.
[18] Q. Meng, K. Cai, Y. Chen, L.J.N.E. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy 36 (2017) 268-285.
[19] A.M. Bryan, L.M. Santino, Y. Lu, S. Acharya, J.M.J.C.o.M. D’Arcy, Conducting polymers for pseudocapacitive energy storage, Chemistry of Materials 28(17) (2016) 5989-5998.
[20] C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J.J.C.S.R. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors, Chemical Society Reviews 44(21) (2015) 7484-7539.
[21] A. Volkov, S. Paula, D.J.B. Deamer, Bioenergetics, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers, Bioelectrochemistry and Bioenergetics 42(2) (1997) 153-160.
[22] E.J.T.J.o.P.C. Nightingale Jr, Phenomenological theory of ion solvation. Effective radii of hydrated ions, The Journal of Physical Chemistry 63(9) (1959) 1381-1387.
[23] M.Y. Kiriukhin, K.D.J.B.c. Collins, Dynamic hydration numbers for biologically important ions, Biophysical chemistry 99(2) (2002) 155-168.
[24] D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, J. Zhang, Y.J.C.S.R. Chen, Emergence of fiber supercapacitors, Chemical Society Reviews 44(3) (2015) 647-662.
[25] S. Vijayakumar, S.-H. Lee, K.-S.J.E.A. Ryu, Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance, Electrochimica Acta 182 (2015) 979-986.
[26] S.-M. Chen, R. Ramachandran, V. Mani, R.J.I.J.E.S. Saraswathi, Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review, Int. J. Electrochem. Sci 9(8) (2014) 4072-4085.
[27] N.d.M. Pereira, J.P.C. Trigueiro, I.d.F. Monteiro, L.A. Montoro, G.G.J.E.A. Silva, Graphene oxide–ionic liquid composite electrolytes for safe and high-performance supercapacitors, Electrochimica Acta 259 (2018) 783-792.
[28] R. Bendi, V. Kumar, V. Bhavanasi, K. Parida, P.S.J.A.E.M. Lee, Metal Organic Framework‐Derived Metal Phosphates as Electrode Materials for Supercapacitors, Advanced Energy Materials 6(3) (2016) 1501833.
[29] H.-J. Chu, C.-Y. Lee, N.-H.J.J.o.P.S. Tai, Green preparation using black soybeans extract for graphene-based porous electrodes and their applications in supercapacitors, Journal of Power Sources 322 (2016) 31-39.
[30] P. Taberna, P. Simon, J.-F.J.J.o.T.E.S. Fauvarque, Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors, Electrochemical Society 150(3) (2003) A292-A300.
[31] P. Xu, T. Gu, Z. Cao, B. Wei, J. Yu, F. Li, J.H. Byun, W. Lu, Q. Li, T.W.J.A.E.M. Chou, Carbon Nanotube Fiber Based Stretchable Wire‐Shaped Supercapacitors, Advanced Energy Materials 4(3) (2014) 1300759.
[32] M.N. Patel, X. Wang, D.A. Slanac, D.A. Ferrer, S. Dai, K.P. Johnston, K.J.J.J.o.M.C. Stevenson, High pseudocapacitance of MnO 2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates, Journal of Materials Chemistry A 22(7) (2012) 3160-3169.
[33] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S.J.n. Ruoff, Graphene-based composite materials, nature 442(7100) (2006) 282.
[34] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A.J.s. Firsov, Electric field effect in atomically thin carbon films, science 306(5696) (2004) 666-669.
[35] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S.J.A.m. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Advanced materials 22(35) (2010) 3906-3924.
[36] A.K. Geim, K.S. Novoselov, The rise of graphene, Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific2010, pp. 11-19.
[37] E. Abbasi, A. Akbarzadeh, M. Kouhi, M.J.A.c. Milani, nanomedicine,, biotechnology, Graphene: synthesis, bio-applications, and properties, 44(1) (2016) 150-156.
[38] M. Yi, Z.J.J.o.M.C.A. Shen, A review on mechanical exfoliation for the scalable production of graphene, Journal of Materials Chemistry A 3(22) (2015) 11700-11715.
[39] A. Guermoune, T. Chari, F. Popescu, S.S. Sabri, J. Guillemette, H.S. Skulason, T. Szkopek, M.J.C. Siaj, Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors, Carbon 49(13) (2011) 4204-4210.
[40] M. Qi, Z. Ren, Y. Jiao, Y. Zhou, X. Xu, W. Li, J. Li, X. Zheng, J.J.T.J.o.P.C.C. Bai, Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene, The Journal of Physical Chemistry C 117(27) (2013) 14348-14353.
[41] L. Banszerus, M. Schmitz, S. Engels, J. Dauber, M. Oellers, F. Haupt, K. Watanabe, T. Taniguchi, B. Beschoten, C.J.S.a. Stampfer, Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper, Science advances 1(6) (2015) e1500222.
[42] G. Kalita, M. Tanemura, Fundamentals of Chemical Vapor Deposited Graphene and Emerging Applications, Graphene Materials-Advanced Applications, IntechOpen (2017) 41.
[43] W.S. Hummers Jr, R.E.J.J.o.t.a.c.s. Offeman, Preparation of graphitic oxide, Journal of the american chemical society 80(6) (1958) 1339-1339.
[44] A. Samal, D.P.J.C.T. Das, Transfiguring UV light active “metal oxides” to visible light active photocatayst by reduced graphene oxide hypostatization, Catalysis Today 300 (2018) 124-135.
[45] J.S. Cha, S.H. Park, S.-C. Jung, C. Ryu, J.-K. Jeon, M.-C. Shin, Y.-K.J.J.o.I. Park, E. Chemistry, Production and utilization of biochar: A review, Journal of Industrial and Engineering Chemistry 40 (2016) 1-15.
[46] T. Volk, L. Abrahamson, E. White, E. Neuhauser, E. Gray, C. Demeter, C. Lindsey, J. Jarnefeld, D. Aneshansley, R. Pellerin, Developing a willow biomass crop enterprise for bioenergy and bioproducts in the United States, Proceedings of Bioenergy, 2000.
[47] Y.-P. Gao, Z.-B. Zhai, K.-J. Huang, Y.-Y.J.N.J.o.C. Zhang, Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors, New Journal of Chemistry 41(20) (2017) 11456-11470.
[48] A.M. Abioye, F.N.J.R. Ani, s.e. reviews, Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review, Renewable and sustainable energy reviews 52 (2015) 1282-1293.
[49] A. Aworn, P. Thiravetyan, W.J.J.o.A. Nakbanpote, A. Pyrolysis, Preparation and characteristics of agricultural waste activated carbon by physical activation having micro-and mesopores, Journal of Analytical and Applied Pyrolysis 82(2) (2008) 279-285.
[50] H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M.J.J.o.P.S. Zheng, Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors, Journal of Power Sources 302 (2016) 164-173.
[51] B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M.J.E. Cai, E. Science, Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy & Environmental Science 9(1) (2016) 102-106.
[52] E. Raymundo‐Piñero, M. Cadek, F. Béguin, Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds, Advanced Functional Materials 19(7) (2009) 1032-1039.
[53] Q. Xie, R. Bao, A. Zheng, Y. Zhang, S. Wu, C. Xie, P.J.A.S.C. Zhao, Engineering, Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density, ACS Sustainable Chemistry & Engineering 4(3) (2016) 1422-1430.
[54] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J.J.S. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science 351(6271) (2016) 361-365.
[55] Z.-Y. Sui, Y.-N. Meng, P.-W. Xiao, Z.-Q. Zhao, Z.-X. Wei, B.-H.J.A.a.m. Han, interfaces, Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents, ACS applied materials & interfaces 7(3) (2015) 1431-1438.
[56] J. Hou, C. Cao, F. Idrees, X.J.A.n. Ma, Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors, ACS nano 9(3) (2015) 2556-2564.
[57] J. Chen, J. Xu, S. Zhou, N. Zhao, C.-P.J.N.E. Wong, Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors, Nano Energy 25 (2016) 193-202.
[58] X. Liu, R. Mi, L. Yuan, F. Yang, Z. Fu, C. Wang, Y.J.F.i.c. Tang, Nitrogen-Doped Multi-Scale Porous Carbon for High Voltage Aqueous Supercapacitors, Frontiers in chemistry 6 (2018) 475.
[59] Y.-H. Lee, K.-H. Chang, C.-C.J.J.o.P.S. Hu, Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes, Journal of Power Sources 227 (2013) 300-308.
[60] C.-T. Hung, N. Yu, C.-T. Chen, P.-H. Wu, X. Han, Y.-S. Kao, T.-C. Liu, Y. Chu, F. Deng, A.J.J.o.M.C.A. Zheng, Highly nitrogen-doped mesoscopic carbons as efficient metal-free electrocatalysts for oxygen reduction reactions, Journal of Materials Chemistry A 2(47) (2014) 20030-20037.
[61] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W.J.N.l. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano letters 11(6) (2011) 2472-2477.
[62] F. Béguin, K. Szostak, G. Lota, E. Frackowiak, A Self‐Supporting Electrode for Supercapacitors Prepared by One‐Step Pyrolysis of Carbon Nanotube/Polyacrylonitrile Blends, Advanced Materials 17(19) (2005) 2380-2384.
[63] J. Tan, H. Chen, Y. Gao, H.J.E.A. Li, Nitrogen-doped porous carbon derived from citric acid and urea with outstanding supercapacitance performance, Electrochimica Acta 178 (2015) 144-152.
[64] G. Guan, M. Kaewpanha, X. Hao, A.J.R. Abudula, s.e. reviews, Catalytic steam reforming of biomass tar: Prospects and challenges, Renewable and sustainable energy reviews 58 (2016) 450-461.
[65] J. Han, H.J.R. Kim, s.e. reviews, The reduction and control technology of tar during biomass gasification/pyrolysis: an overview, Renewable and sustainable energy reviews 12(2) (2008) 397-416.
[66] G. Ferrero, A. Fuertes, M.J.S.r. Sevilla, From Soybean residue to advanced supercapacitors, Scientific reports 5 (2015) 16618.
[67] Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J.J.N.l. Liu, Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors, Nano letters 12(8) (2012) 4206-4211.
[68] S. Baskaran, Structure and Regulation of Yeast Glycogen Synthase, 2010.
[69] A. Connelly, BET surface area, 2017. https://andyjconnelly.wordpress.com/2017/03/13/bet-surface-area/.
[70] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.J.P. Sing, A. Chemistry, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry 87(9-10) (2015) 1051-1069.
[71] M.M. Ahmadi, G.A.J.I.T.o.C. Jullien, S.I.R. Papers, Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors, IEEE Transactions on Circuits and Systems I: Regular Papers 56(7) (2009) 1339-1348.
[72] K. Chen, D.J.C.J.o.C. Xue, Multiple Functional Biomass‐Derived Activated Carbon Materials for Aqueous Supercapacitors, Lithium‐Ion Capacitors and Lithium‐Sulfur Batteries, Chinese Journal of Chemistry 35(6) (2017) 861-866.
[73] J. Wang, S.J.J.o.M.C. Kaskel, KOH activation of carbon-based materials for energy storage, Journal of Materials Chemistry A 22(45) (2012) 23710-23725.
[74] A.C.J.S.s.c. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid state communications 143(1-2) (2007) 47-57.
[75] R. Beams, L.G. Cançado, L.J.J.o.P.C.M. Novotny, Raman characterization of defects and dopants in graphene, Journal of Physics: Condensed Matter 27(8) (2015) 083002.
[76] J. Ribeiro-Soares, M. Oliveros, C. Garin, M. David, L. Martins, C. Almeida, E. Martins-Ferreira, K. Takai, T. Enoki, R.J.C. Magalhães-Paniago, Structural analysis of polycrystalline graphene systems by Raman spectroscopy, Carbon 95 (2015) 646-652.
[77] S. Brunauer, P.H. Emmett, E.J.J.o.t.A.c.s. Teller, Adsorption of gases in multimolecular layers, Journal of the American chemical society 60(2) (1938) 309-319.
[78] A. Grosman, C.J.L. Ortega, Capillary condensation in porous materials. Hysteresis and interaction mechanism without pore blocking/percolation process, Langmuir 24(8) (2008) 3977-3986.
[79] Y. Zhang, D. Shao, J. Yan, X. Jia, Y. Li, P. Yu, T.J.J.o.N.G.G. Zhang, The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China, Journal of Natural Gas Geoscience 1(3) (2016) 213-220.
[80] B.-A. Mei, O. Munteshari, J. Lau, B. Dunn, L.J.T.J.o.P.C.C. Pilon, Physical interpretations of Nyquist plots for EDLC electrodes and devices, The Journal of Physical Chemistry C 122(1) (2017) 194-206.
[81] S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, X.J.E.A. Zou, Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent, Electrochimica Acta 90 (2013) 542-549.
[82] W. Fan, Y.-Y. Xia, W.W. Tjiu, P.K. Pallathadka, C. He, T.J.J.o.P.S. Liu, Nitrogen-doped graphene hollow nanospheres as novel electrode materials for supercapacitor applications, Journal of Power Sources 243 (2013) 973-981.
[83] J. Han, G. Xu, B. Ding, J. Pan, H. Dou, D.R.J.J.o.M.C.A. MacFarlane, Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors, Journal of Materials Chemistry A 2(15) (2014) 5352-5357.
[84] C.-H. Wang, W.-C. Wen, H.-C. Hsu, B.-Y.J.A.P.T. Yao, High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor, Advanced Powder Technology 27(4) (2016) 1387-1395.
[85] B.-H. Cheng, K. Tian, R.J. Zeng, H.J.S.E. Jiang, Fuels, Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste, Sustainable Energy & Fuels 1(4) (2017) 891-898.
[86] C.-S. Yang, Y.S. Jang, H.K.J.C.A.P. Jeong, Bamboo-based activated carbon for supercapacitor applications, Current Applied Physics 14(12) (2014) 1616-1620.
[87] E.Y.L. Teo, L. Muniandy, E.-P. Ng, F. Adam, A.R. Mohamed, R. Jose, K.F.J.E.A. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochimica Acta 192 (2016) 110-119.
[88] S. Senthilkumar, R.K. Selvan, N. Ponpandian, J.J.R.A. Melo, Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor, RSC Advances 2(24) (2012) 8937-8940.
[89] N. Choudhury, S. Sampath, A.J.E. Shukla, E. Science, Hydrogel-polymer electrolytes for electrochemical capacitors: an overview, Energy & Environmental Science 2(1) (2009) 55-67.
[90] H. Yu, J. Wu, L. Fan, Y. Lin, K. Xu, Z. Tang, C. Cheng, S. Tang, J. Lin, M.J.J.o.P.S. Huang, A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor, Journal of Power Sources 198 (2012) 402-407.