研究生: |
鄭 傑 Cheng, Chieh |
---|---|
論文名稱: |
應用鋁製均溫板對方型鋰離子電池散熱性能及均溫性提升 Using a Novel Aluminum Vapor Chamber for Cooling and Temperature Uniformity Improvement for Prismatic Lithium-Ion Batteries |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: |
李明蒼
Lee, Ming-Tsang 陳柏志 Chen, Po-Chih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | 電池熱管理系統 、鋰電池 、鋁均溫板 、均溫性 |
外文關鍵詞: | Battery thermal management system, Lithium-ion batteries, Aluminum- vapor chamber, Temperature uniformity |
相關次數: | 點閱:42 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電池熱管理系統(Battery Thermal Management System,BTMS) 是各電池系統中幫助鋰電池在工作時保持在適當的溫度範圍中,以此確保鋰電池的輸出效率、壽命、安全性等各項性能,本研究提出以novel ALVC + Al plate + cold plate來設計BTMS ,因為novel ALVC的結構不同於傳統的VC,有著更多的支撐柱以減少工作流體的回水路徑,使得熱阻更小,且厚度會較傳統VC更薄有望增加抗重力的能力,預期novel ALVC改善電池模組中的單顆電池溫度與溫度差以及模組中各電池的溫度差。透過實驗的方式將電池的熱參數(熱傳導係數、比熱)以及發熱量,後面將前面側出的參數與發熱量輸進Fluent利用模擬的方式求出在cold plate內的入口流量為20 GPH下,Al plate的最佳厚度,得到在電池間加入 10 mm 厚的Al plate能很好的改善電池表面的平均溫度以及表面溫差,再以實驗進行驗證,比對自然對流、cold plate only、ALVC + cold plate與Al-plate + ALVC + cold plate對於模組中單電池的溫度影響,以及模組內各電池間的均溫效果,最後顯示對比自然對流, Al-plate + ALVC + cold plate的平均溫升有著58%的改善,溫差提升了48%的影響,而對電池模組中的溫度有著68.8%的改善。
A Battery Thermal Management System (BTMS) is essential for maintaining lithium batteries within an optimal temperature range during operation, ensuring performance, longevity, and safety. This study proposes a novel BTMS design using ALVC, Al-plate, and cold plate. The novel ALVC features additional support columns to reduce the working fluid's return path, resulting in lower thermal resistance and increased resistance to gravity due to its thinner profile compared to traditional VC.
Experiments were conducted to determine the thermal parameters (thermal conductivity, specific heat capacity) and heat generation rates of the batteries. These parameters were then used in Fluent simulations to optimize the aluminum plate thickness under a flow rate of 20 GPH in the cold plate. The simulation results showed that adding a 10 mm thick aluminum plate significantly improved both the average surface temperature and the temperature uniformity of the batteries. Experimental validation compared the effects of natural convection, cold plate only, ALVC + cold plate, and ALVC + aluminum plate + cold plate on the temperature distribution of individual cells and the temperature uniformity within the module. The results showed that the ALVC + aluminum plate + cold plate configuration improved average temperature rise by 58%, reduced temperature differences by 48%, and enhanced temperature uniformity within the battery module by 68.8%, compared to natural convection.
References
[1] L.H. Saw, Y. Ye, A.A.O. Tay, W.T. Chong, S.H. Kuan, M.C. Yew, Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling, Appl. Energy 177 (2016) 783–792.
[2] U. von Sacken, E. Nodwell, A. Sundher, J.R. Dahn, Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries, J. Power Sources 54 (1995) 240–245.
[3] D.D. MacNeil, J.R. Dahn, The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2, J. Electrochem. Soc. 148 (2001) A1205.
[4] P. Biensan, B. Simon, J.P. Pérès, A. DeGuibert, M. Broussely, J.M. Bodet, F. Perton, On safety of lithium-ion cells, J. Power Sources 81–82 (1999) 906–912.
[5] D. Karimi, H. Behi, J. Van Mierlo, M. Berecibar, Advanced thermal management systems for high-power lithium-ion capacitors: A comprehensive review, Designs 6 (2022) 53–77.
[6] X.M. Xu, R. He, Research on the heat dissipation performance of battery pack based on forced air cooling, J. Power Sources 240 (2013) 33–41.
[7] H. Sun, R. Dixon, Development of cooling strategy for an air cooled lithium-ion battery pack, J. Power Sources 272 (2014) 404–414.
[8] K. Yu, X. Yang, Y. Cheng, C. Li, Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack, J. Power Sources 270 (2014) 193–200.
[9] C. Lan, J. Xu, Y. Qiao, Y .Ma, Thermal management for high power lithium-ion battery by minichannel aluminum tubes, Appl. Therm. Eng. 101 (2016) 284–292.
[10] L.W. Jin, P.S. Lee, X.X. Kong, Y. Fan, S.K. Chou, Ultra-thin minichannel LCP for EV battery thermal management, Appl. Energy 113 (2014) 1786–1794.
[11] M. Li, S. Ma, H. Jin, R. Wang, Y. Jiang, Performance analysis of liquid cooling battery thermal management system in different cooling cases, J. Energy Storage 72 (2023) 108651.
[12] Y. Huo, Z. Rao, X. Liu, J. Zhao, Investigation of power battery thermal management by using mini-channel cold plate, Energy Convers. Manag. 89 (2015) 387–395.
[13] C. Wang, G. Zhang, L. Meng, X. Li, W. Situ, Y. Lv, M. Rao, Liquid cooling based on thermal silica plate for battery thermal management system, Int. J. Energy Res. 41 (2017) 2468–2479.
[14] G. Yu, S.W. Chiang, W. Chen, H. Du, Thermal management of a Li-ion battery for electric vehicles using pcm and water-cooling board, Key Eng. Mater. 814 KEM (2019) 307–313.
[15] Z. Rao, S. Wang, G. Zhang, Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery, Energy Convers. Manag. 52 (2011) 3408–3414.
[16] X. Ye, Y. Zhao, Z. Quan, Experimental study on heat dissipation for lithium-ion battery based on micro heat pipe array (MHPA), Appl. Therm. Eng. 130 (2018) 74–82.
[17] C. Anamtawach, S. Odngam, C. Sumpavakup, Experimental investigation on affecting air flow against the maximum temperature difference of a lithium-ion battery with heat pipe cooling, World Electr. Veh. J. 14 (2023).
[18] Q. Wang, B. Jiang, Q.F. Xue, H.L. Sun, B. Li, H.M. Zou, Y.Y. Yan, Experimental investigation on EV battery cooling and heating by heat pipes, Appl. Therm. Eng. 88 (2014) 54–60.
[19] J. Cheng, S. Shuai, Z. Tang, C. Tao, Thermal performance of a lithium-ion battery thermal management system with vapor chamber and minichannel cold plate, Appl. Therm. Eng. 222 (2023) 119694.
[20] J.S. Kim, D.H. Shin, S.M. You, J. Lee, Thermal performance of aluminum vapor chamber for EV battery thermal management, Appl. Therm. Eng. 185 (2021).
[21] J. Gou, W. Liu, Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle, Appl. Therm. Eng. 152 (2019) 362–369.
[22] L. Liang, Y. Zhao, Y. Diao, R. Ren, L. Zhang, G. Wang, Optimum cooling surface for prismatic lithium battery with metal shell based on anisotropic thermal conductivity and dimensions, J. Power Sources 506 (2021) 230182.
[23] M. Armand, Nature lithium battery, Nature 414 (2001) 359–367.
[24] D. Bernardi, E. Pawlikowski, J. Newman, General energy balance for battery systems, Electrochem. Soc. Ext. Abstr. 84–2 (1984) 164–165.
[25] P. Jindal, R. Katiyar, J. Bhattacharya, Evaluation of accuracy for Bernardi equation in estimating heat generation rate for continuous and pulse-discharge protocols in LFP and NMC based Li-ion batteries, Appl. Therm. Eng. 201 (2022).
[26] N. Nieto, L. Díaz, J. Gastelurrutia, I. Alava, F. Blanco, J. Carlos Ramos, A. Rivas, Thermal modeling of large format lithium-ion cells, J. Electrochem. Soc. 160 (2013) A212–A217.
[27] Q. Huang, M. Yan, Z. Jiang, Thermal study on single electrodes in lithium-ion battery, J. Power Sources 156 (2006) 541–546.
[28] G. Vertiz, M. Oyarbide, H. Macicior, O. Miguel, I. Cantero, P.F. de Arroiabe, I. Ulacia, Thermal characterization of large size lithium-ion pouch cell based on 1D electro-thermal model, J. Power Sources 272 (2014) 476–484.
[29] H. Bhundiya, M. Hunt, Measurement of the effective radial thermal conductivities of 18650 and 26650 lithium-ion battery cells, Tfaws. (2018) 1–12.
[30] X. Cheng, Y. Tang, Z. Wang, Thermal property measurements of a large prismatic lithium-ion battery for electric vehicles, J. Therm. Sci. 30 (2021) 477–492.
[31] [21] G.L. Plett, Battery Management Systems, Volume I: Battery Modeling, Artech House, 2015.
[32] K. Makinejad, R. Arunachala, S. Arnold, H. Ennifar, H. Zhou, A. Jossen, W. Changyun, A lumped electro-thermal model for Li-ion cells in electric vehicle application, World Electr. Veh. J. 7 (2015) 1–13.
[33] Z. Geng, J. Groot, T. Thiringer, A time- and cost-effective method for entropic coefficient determination of a large commercial battery cell, IEEE Trans. Transp. Electrif. 6 (2020) 257–266.
[34] C. Forgez, D.V. Do, G. Friedrich, M. Morcrette, C. Delacourt, Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery, J. Power Sources 195 (2010) 2961–2968.
[35] P. Trinuruk, W. Onnuam, N. Senanuch, C. Sawatdeejui, P. Jenyongsak, S. Wongwises, Experimental and numerical studies on the effect of lithium-ion batteries’ shape and chemistry on heat generation, Energies 16 (2023) 1–19.
[36] X. Xu, H. Zhang, L. Cao, Z. Yi, P. Li, H. Guo, Heat generation and surrogate model for large-capacity nickel-rich prismatic lithium-ion battery as against 18650 battery, J. Loss Prev. Process Ind. 77 (2022) 104783.
[37] N. Damay, C. Forgez, M.P. Bichat, G. Friedrich, A method for the fast estimation of a battery entropy-variation high-resolution curve – Application on a commercial LiFePO4/graphite cell, J. Power Sources 332 (2016) 149–153.
[38] M. Steinhardt, J.V. Barreras, H. Ruan, B. Wu, G.J. Offer, A. Jossen, Meta-analysis of experimental results for heat capacity and thermal conductivity in lithium-ion batteries: A critical review, J. Power Sources 522 (2022) 230829.
[39] C. Lin, S. Xu, Z. Li, B. Li, G. Chang, J. Liu, Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles, J. Power Sources 294 (2015) 633–642.
[40] E.J. LeFevre, Laminar free convection from a vertical plane surface, 9th Int. Congr. Appl. Mech., Brussels, 1956.
[41] S.Yin, W.Zhao, Y.Tang, H.Li, H.Huang, W.Ji, S.Zhang, Ultra-thin vapour chamber based heat dissipation technology for lithium-ion battery, Appl. Energy. 358 (2024) 122591.