簡易檢索 / 詳目顯示

研究生: 魏瑜甫
Wei, Pai-Yi
論文名稱: Manipulating Polyelectrolyte Complexes in Salt Solutions: a Computer simulation study
操控鹽溶液中之高分子電解質:電腦模擬研究
指導教授: 蕭百沂
Hsiao, Pai-Yi
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 126
中文關鍵詞: 基因定序基因治療電場操控
外文關鍵詞: DNA condensation, reentrant condensation, gene sequencing, gene therapy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對高分子電解質在鹽溶液中形成複合物以及利用電場操控此複合物的行為進行了一連串的朗日凡動力學模擬,主要研究結果如下所述:
    首先,溶液中加入的多價鹽可依序引發兩個高分子電解質的構形變化:一個高分子鏈濃縮反應和一個反濃縮反應。鏈硬度會影響這兩的構形變化變化形式,也決定了高分子鏈是否會呈現有序的結構。與此同時,溶液中離子的分佈通常會反應出局部或全域的高分子電解質構形,所以鏈硬度也是影響溶液中離子分佈的一個重要因素。
    其次,高分子鏈和吸附於其上的離子會形成的高分子電解質複合物,此複合物在直流電場作用下,當電場強度超越臨界值E*時會被拉開。此臨界值E*與多價鹽濃度Cs具有非單調的關連性,這是由於不同鹽濃度下,極化複合物的難易度不同所致。此時,極化難易度由單一離子的吸附作用強度與全部離子吸附數量所共同決定。臨界電場E*也與鏈長N有關,且具指數關係E*~N-θ。其中的指數θ隨多價鹽價數Zs提高而減小。利用E*與Cs, Zs,及N的關係,可為在自由溶液中進行的電泳分離技術提供穩固的基礎。
    最後,濃縮之高分子電解質可利用交流電場將其拉伸,只需此電場強度強於直流臨界電場E*且電場頻率小於某臨界值。此臨界頻率可對應到高分子鏈上介面處多價離子的電荷鬆弛/脫離時間之倒數。此一鬆弛時間正好與直流電場下高分子鏈構形的震盪時間一致。這意味著在交流電場中,吸附的多價反離子從在介面上鬆弛及從界面上脫離的行為控制了高分子電解質上電偶極的形成和拉伸行為的動力學現象。


    In this thesis, a series of Langevin dynamics simulations are performed to investigate the complexation
    of polyelectrolytes (PE) in multivalent salt solutions and the manipulation of those PE complexes by electric fields. Our study provides the following results.
    Firstly, the addition of multivalent salt can induce two consequent conformational (or phase) transitions of PE: a condensation of PE, followed by a decondensation. The chain stiffness affects the transition-order of both condensation and decondensation. It also determines whether or not the PE structure can be ordered. It modifies the ion distribution around the chain at the same time because the distribution profiles usually reflect either local or global structure of the PE chain.
    Secondly, a PE chain, which forms PE complex with condensed ions, can be unfolded in a direct-current (DC) electric field once the field strength exceeds a critical value E*. The value of E* dependence on Cs and the dependence is non-monotonic. This is because the difficulties for polarized a PE complex at different Cs are different. The difficulty is attributed to both the binding strength of condensed ions and the amount of them. E* also depends on the chain length N and shows a power-law-like relation E* ∼ N-θ. The exponent θ decreases with increasing salt valence Zs. The dependences of E_ on Cs, Zs and N provide a solid foundation to separate PE chains by length in free solutions.
    Finally, a collapsed PE chain can be unfolded by an alternating-current (AC) electric field when the field strength exceeds the DC threshold E* and the frequency is below a critical value. The critical frequency corresponds to the inverse charge relaxation/dissociation time of condensed multivalent counterions at the interface of the collapsed PE. The relaxation time is coincident with the DC chain fluctuation time. This suggests that, in an AC electric field, the dissociation of condensed polyvalent counterion on the collapsed PE interface controls the PE dipole formation and unfolding dynamics.

    Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 1 Introduction 1 2 Model and Method 4 2.1 Coarse-grained model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Langevin dynamics simulation method . . . . . . . . . . . . . . . . . . . . . 6 2.3 LAMMPS: a classical molecular dynamics code . . . . . . . . . . . . . . . . 7 3 Effect of Chain stiffness on Polyelectrolytes in Multivalent Salt Solutions 8 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1.1 Salt-induced condensation and decondensation of polyelectrolytes . . 9 3.1.2 Order of coil-globule transition and effect of chain stiffness . . . . . 10 3.1.3 Polyelectrolyte conformation and effect of chain stiffness . . . . . . . 10 3.1.4 Ion distribution and effect of chain stiffness . . . . . . . . . . . . . . 11 3.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.1 Size of PE chain in tetravalent-salt solution . . . . . . . . . . . . . . 15 3.3.2 Snapshot of PE chain in tetravalent-salt solution . . . . . . . . . . . 18 3.3.3 Probability density distribution of chain conformation . . . . . . . . 21 3.3.4 Dynamics of chain conformation . . . . . . . . . . . . . . . . . . . . 26 3.3.5 Schematic state diagram . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.6 Ion distribution in chain radial direction . . . . . . . . . . . . . . . . 34 3.3.7 Charge distribution in chain radial direction . . . . . . . . . . . . . . 38 3.3.8 Ion condensation on a chain and effective chain charge . . . . . . . . 39 3.3.9 Condensed ion distribution in chain axial direction . . . . . . . . . . 43 3.3.10 Radial distribution function between monomers and tetravalent counterions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.11 Reexpansion of PE at high salt concentration . . . . . . . . . . . . . 51 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Manipulating Polyelectrolytes in Salt Solutions by DC Electric Field 55 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.1.1 Electrophoretic separation techniques in free solution . . . . . . . . . 55 4.1.2 Separation and elongation of polyelectrolytes in salt solutions . . . . 56 4.1.3 Effect of valence of the added salt . . . . . . . . . . . . . . . . . . . 57 4.1.4 Effect of multivalent salt concentration . . . . . . . . . . . . . . . . . 58 4.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 Chain conformation in electric fields . . . . . . . . . . . . . . . . . . 61 4.3.2 Determination of the critical electric field E∗ . . . . . . . . . . . . . 66 4.3.3 Electrophoretic mobility . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.3.4 Ion condensation and effective chain charge in electric fields . . . . . 72 4.3.5 Distribution and dynamics of condensed ions . . . . . . . . . . . . . 77 4.3.6 Degree of unfolding of PE in trivalent salt solution . . . . . . . . . . 84 4.3.7 Critical electric field E∗ and scaling behavior . . . . . . . . . . . . . 86 4.3.8 Unfolded chain structures . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 Unfolding Collapsed Polyelectrolytes Using AC Electric Field 96 5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.1.1 Electrophoresis and stretching of polyelectrolytes . . . . . . . . . . . 97 5.1.2 Interplay between frequency and other factors in AC manipulation . 98 5.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.1 Degree of chain unfolding in AC electric fields . . . . . . . . . . . . . 102 5.3.2 Simulation snapshots in AC fields . . . . . . . . . . . . . . . . . . . . 104 5.3.3 Distributions of condensed ions and complex charges in an AC cycle 106 5.3.4 Theory of chain unfolding in AC electric fields . . . . . . . . . . . . 108 5.3.5 Time evolution of polarization and conformation of PE in AC fields 112 5.3.6 Polarization time and fluctuation time . . . . . . . . . . . . . . . . . 114 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6 Conclusions 117 Bibliography 119

    [1] F. Oosawa. Polyelectrolytes. Marcel Dekker: New York, 1971.
    [2] H. Dautzenberg, W. Jaeger, J. Kotz, B. Philipp, Ch. Seidel, and D. Stscherbina.
    Polyelectrolytes: Formation, Characterization and Application. Hanser Gardner Publications,
    1994.
    [3] S. K. Tripathy, J. Kumar, and H. S. Nalwa. Handbook of Polyelectrolytes and Their
    Applications, volume Vols. IIII. American Scientific, Stevenson Ranch, CA, 2002.
    [4] V. A. Bloomfield. DNA condensation. Curr. Opin. Struct. Biol., 6:334, 1996.
    [5] M. P Hughes. AC electrokinetics: applications for nanotechnology. Nanotechnology,
    11:124, 2000.
    [6] I.-F. Cheng, S. Senapati, S. Cheng, H.-C. Chang, and H.-C. Chang. A rapid field-use
    assay for mismatch number and location of hybridized DNAs. Lab Chip, 10:828, 2010.
    [7] R. R. Netz. Nonequilibrium unfolding of polyelectrolyte condensates in electric fields.
    Phys. Rev. Lett., 90:128104, 2003.
    [8] P.-Y. Hsiao and K.-M Wu. Free solution electrophoresis of homopolyelectrolytes. J.
    Phys. Chem. B, 112:13177, 2008.
    [9] M. Washizu and O. Kurosawa. Electrostatic manipulation of DNA in microfabricated
    structures. IEEE Trans. Ind. Appl., 26:1165, 1990.
    [10] H.-C. Chang. Nanobead electrokinetics: The enabling microfluidic platform for rapid
    multi-target pathogen detection. AICHE J., 53:2486, 2007.
    [11] M. J. Stevens and K. Kremer. The nature of flexible linear polyelectrolytes in salt
    free solution: A molecular dynamics study. J. Chem. Phys., 103:1669, 1995.
    [12] M. J. Stevens. Simple simulations of DNA condensation. Biophys. J., 80:130, 2001.
    [13] P.-Y. Hsiao and E. Luijten. Salt-induced collapse and reexpansion of highly charged
    flexible polyelectrolytes. Phys. Rev. Lett., 97:148301, 2006.
    [14] R. W. Hockney and J. Y. Eastwood. Computer Simulation Using Particles. Taylor
    & Francis, 1988.
    [15] D. Long, J.-L. Viovy, and A. Ajdari. Simultaneous action of electric fields and nonelectric
    forces on a polyelectrolyte: Motion and deformation. Phys. Rev. Lett., 76:3858,
    1996.
    [16] J.-L. Viovy. Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms.
    Rev. Mod. Phys., 72:813, 2000.
    [17] M. Tanaka and A. Y. Grosberg. Electrophoresis of a charge-inverted macroion complex:
    Molecular-dynamics study. Eur. Phys. J. E, 7:371, 2002.
    [18] M. Tanaka. Effects of asymmetric salt and a cylindrical macroion on charge inversion:
    Electrophoresis by molecular dynamics simulations. Phys. Rev. E, 68:061501, 2003.
    [19] K. Grass and C. Holm. Polyelectrolytes in electric fields: measuring the dynamical
    effective charge and effective friction. Soft Matter, 5:2079, 2009.
    [20] Official website of LAMMPS — http://lammps.sandia.gov/.
    [21] L. C. Gosule and J. A. Schellman. Compact form of DNA induced by spermidine.
    Nature, 259:333, 1976.
    [22] P. G. Arscott, A.-Z. Li, and V. A. Bloomfield. Condensation of DNA by trivalent
    cations. 1. effects of DNA length and topology on the size and shape of condensed
    particles. Biopolymers, 30:619, 1990.
    [23] K. Yoshikawa and Y. Yoshikawa. Compaction and condensation of DNA. In R. I.
    Mahato and S. W. Kim, editors, Pharmaceutical Perspectives of Nucleic Acid-Based
    Therapeutics, pages 136–154. Taylor & Francis, 2002.
    [24] J. Widom and R. L. Baldwin. Cation-induced toroidal condensation of DNA studies
    with Co3+(NH3)6. J. Mol. Biol., 144:431, 1980.
    [25] G. S. Manning. Limiting laws and counterion condensation in polyelectrolyte solutions
    I. Colligative properties. J. Chem. Phys., 51:924, 1969.
    [26] M. J. Stevens and S. J. Plimptom. The effect of added salt on polyelectrolyte structure.
    Eur. Phys. J. B, 2:341, 1998.
    [27] M. Olvera de la Cruz, L. Belloni, M. Delsanti, J. P. Dalbiez, O. Spalla, and M. Drifford.
    Precipitation of highly charged polyelectrolyte solutions in the presence of multivalent
    salts. J. Chem. Phys., 103:5781, 1995.
    [28] E. Raspaud, M. Olvera de la Cruz, J.-L. Sikorav, and F. Livolant. Precipitation of
    DNA by polyamines: A polyelectrolyte behavior. Biophys. J., 74:381, 1998.
    [29] G. Maurstad, S. Danielsen, and B. T. Stokke. Analysis of compacted semiflexible
    polyanions visualized by atomic force microscopy: Influence of chain stiffness on the
    morphologies of polyelectrolyte complexes. J. Phys. Chem. B, 107:8172, 2003.
    [30] H. R. Kruyt. Ed. Colloid Science, volume Vol. II. Elsevier Publishing Company: New
    York, 1949.
    [31] W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, and V. A. Parsegian. DNA inspired
    electrostatics. Phys. Today, 53:38, 2000.
    [32] A. Y. Grosberg, T. T. Nguyen, and V. I. Shklovskii. Colloquium: The physics of
    charge inversion in chemical and biological systems. Rev. Mod. Phys., 74:329, 2002.
    [33] Y. Levin. Electrostatic correlations: from plasma to biology. Rep. Prog. Phys.,
    65:1577, 2002.
    [34] Gerard C. L. Wong. Electrostatics of rigid polyelectrolytes. Curr. Opin. Colloid
    Interface Sci., 11:310, 2006.
    [35] T. Iwaki, T. Saito, and K. Yoshikawa. How are small ions involved in the compaction
    of DNA molecules? Colloid Surf. B-Biointerfaces, 56:126, 2007.
    [36] V. A. Bloomfield. DNA condensation by multivalent cations. Biopolymers, 44:269,
    1997.
    [37] R. Messina. Electrostatics in soft matter. J. Phys.: Condens. Matter, 21:113102,
    2009.
    [38] J. Pelta, F. Livolant, and J.-L. Sikorav. DNA aggregation induced by polyamines and
    cobalthexamine. J. Biol. Chem., 271:5656, 1996.
    [39] I. Rouzina and V. A. Bloomfield. Macroion attraction due to electrostatic correlation
    between screening counterions. 1. mobile surface-adsorbed ions and diffuse ion cloud.
    J. Phys. Chem., 100:9977, 1996.
    [40] F. J. Solis and M. Olvera de la Cruz. Collapse of flexible polyelectrolytes in multivalent
    salt solutions. J. Chem. Phys., 112:2030, 2000.
    [41] F. J. Solis and M. Olvera de la Cruz. Flexible linear polyelectrolytes in multivalent
    salt solutions: Solubility conditions. Eur. Phys. J. E, 4:143, 2001.
    [42] F. J. Solis. Phase diagram of dilute polyelectrolytes: Collapse and redissolution by
    association of counterions and co-ions. J. Chem. Phys., 117:9009, 2002.
    [43] T. T. Nguyen, I. Rouzina, and B. I. Shklovskii. Reentrant condensation of DNA
    induced by multivalent counterions. J. Chem. Phys., 112:2562, 2000.
    [44] I. M. Lifshitz, A. Y. Grosberg, and A. R. Khokhlov. some problems of the statistical
    physics of polymer chains with volume interaction. Rev. Mod. Phys., 50:683, 1978.
    [45] C. B. Post and B. H. Zimm. Theory of DNA condensation: Collapse versus aggregation.
    Biopolymers, 21:2123, 1982.
    [46] K. Ghosh, G. A. Carri, and M. Muthukumar. Phase transitions in solutions of semiflexible
    polyelectrolytes. J. Chem. Phys., 116:5299, 2002.
    [47] K. Yoshikawa and Y. Matsuzawa. Discrete phase transition of giant DNA dynamics
    of globule formation from a single molecular chain. Physica D, 84:220, 1995.
    [48] K. Yoshikawa, M. Takahashi, V. V. Vasilevskaya, and A. R. Khokhlov. Large discrete
    transition in a single DNA molecule appears continuous in the ensemble. Phys. Rev.
    Lett., 76:3029, 1996.
    [49] K. Yoshikawa, Y. Yoshikawa, and T. Kanbe. All-or-none folding transition in giant
    mammalian DNA. Chem. Phys. Lett., 354:354, 2002.
    [50] M. O. Khan and D. Y. C. Chan. Effect of chain stiffness on polyelectrolyte condensation.
    Macromolecules, 38:3017, 2005.
    [51] Z. Ou and M. Muthukumar. Langevin dynamics of semiflexible polyelectrolytes: Rodtoroidglobule-
    coil structures and counterion distribution. J. Chem. Phys., 123:074905,
    2005.
    [52] H. Noguchi and K. Yoshikawa. Morphological variation in a collapsed single homopolymer
    chain. J. Chem. Phys., 109:5070, 1998.
    [53] V. A. Ivanov, M. R. Stukan, V. Vasilevskaya, W. Paul, and K. Binder. Structures of
    stiff macromolecules of finite chain length near the coil-globule transition: A Monte
    Carlo simulation. Macromol. Theory Simul., 9:488, 2000.
    [54] G. E. Plum, P. G. Arscott, and V. A. Bloomfield. Condensation of DNA by trivalent
    cations. 2. effects of cation structure. Biopolymers, 30:631, 1990.
    [55] G. Maurstad and B. T. Stokke. Toroids of stiff polyelectrolytes. Curr. Opin. Colloid
    Interface Sci., 10:16, 2005.
    [56] D. K. Chattoraj, L. C. Gosule, and J. A. Schellman. DNA condensation with
    polyamines. II. electron microscopic studies. J. Mol. Biol., 121:327, 1978.
    [57] A. Martin, M. C. Davies, B. J. Rackstraw, C. J. Roberts, S. J. B. Tendler S. Stolnik,
    and P. M. Williams. Observation of DNA-polymer condensate formation in real time
    at a molecular level. FEBS Lett., 480:106, 2000.
    [58] M. A. Young, B. Jayaram, and D. Beveridge. Intrusion of counterions into the spine
    of hydration in the minor groove of B-DNA: Fractional occupancy of electronegative
    pockets. J. Am. Chem. Soc., 119:59, 1997.
    [59] E. Allahyarov, H. Lowen, and G. Gompper. Adsorption of monovalent and multivalent
    cations and anions on DNA molecules. Phys. Rev. E, 68:061903, 2003.
    [60] H. J. Limbach and C. Holm. End effects of strongly charged polyelectrolytes: A
    molecular dynamics study. J. Chem. Phys., 114:9674, 2001.
    [61] S. Liu and M. Muthukumar. Langevin dynamics simulation of counterion distribution
    around isolated flexible polyelectrolyte chains. J. Chem. Phys., 116:9975, 2002.
    [62] J. M. G. Sarraguca and A. A. C. C. Pais. Polyelectrolytes in solutions with multivalent
    salt. effects of flexibility and contour length. Phys. Chem. Chem. Phys., 8:4233, 2006.
    [63] P.-Y. Hsiao. Chain morphology, swelling exponent, persistence length, like-charge
    attraction, and charge distribution around a chain in polyelectrolyte solutions: Effects
    of salt concentration and ion size studied by molecular dynamics simulations.
    Macromolecules, 39:7125, 2006.
    [64] P.-Y. Hsiao. Linear polyelectrolytes in tetravalent salt solutions. J. Chem. Phys.,
    124:044904, 2006.
    [65] J. Rudnick and G. Gaspari. The aspherity of random walks. J. Phys. A, 19:L191,1986.
    [66] M. Bishop and C. J. Saltiel. Application of thhe pivot algorithm for investigating
    the shapes of two- and three- dimensional lattice polymers. J. Chem. Phys., 88:6594,
    1988.
    [67] J. M. G. Sarragua, M. Skepo, A. A. C. C. Pais, and P. Linse. Structure of polyelectrolytes
    in 3:1 salt solutions. J. Chem. Phys., 119:12621, 2003.
    [68] K. Yoshikawa and Y. Matsuzawa. Nucleation and growth in single DNA molecules.
    J. Am. Chem. Soc., 118:929, 1996.
    [69] T. Sakaue and K. Yoshikawa. Folding/unfolding kinetics on a semiflexible polymer
    chain. J. Chem. Phys., 117:6323, 2002.
    [70] N. V. Hud and I. D. Vilfan. Toroidal DNA condensates: Unraveling the fine structure
    and the role of nucleation in determining size in vitro. Ann. Rev. Biophys. Biomol.
    Struc., 34:295, 2005.
    [71] M. R. Stukan, V. A. Ivanov, A. Y. Grosberg, W. Paul, and K. Binder. Chain length
    dependence of the state diagram of a single stiff-chain macromolecule: Theory and
    monte carlo simulation. J. Chem. Phys., 118:3392, 2003.
    [72] R. Marquet, A. Wyart, and C. Houssier. Influence of dna length on spermine-induced
    condensation - importance of the bending and stiffening of DNA. Biochimica. et
    Biophysica. Acta., 909:165, 1987.
    [73] V. A. Bloomfield. Condensation of DNA by multivalent cations: Considerations on
    mechanism. Biopolymers, 31:1471, 1991.
    [74] Y.-F. Wei and P.-Y. Hsiao. Effect of chain stiffness on conformation of single polyelectrolytes
    in salt solutions. J. Chem. Phys., 127:064901, 2007.
    [75] T. S. Lo, B. Khusid, and J. Koplik. Dynamical clustering of counterions on flexible
    polyelectrolytes. Phys. Rev. Lett., 100:128301, 2008.
    [76] R. Ni, D. P. Cao, W. C. Wang, and A. Jusufi. Conformation of a spherical polyelectrolyte
    brush in the presence of oppositely charged linear polyelectrolytes. Macromolecules,
    41:5477, 2008.
    [77] W.-D. Tian and Y.-Q. Ma. Molecular dynamics simulations of a charged dendrimer
    in multivalent salt solution. J. Phys. Chem. B, 113:13161, 2009.
    [78] K. Kleparnik and P. Bocek. DNA diagnostics by capillary electrophoresis. Chem.
    Rev., 107:5279, 2007.
    [79] H. Cottet and J.-L. Viovy. The effect of blob size and network dynamics on the sizebased
    separation of polystyrenesulfonates by capillary electrophoresis in the presence
    of entangled polymer solutions. Electrophoresis, 19:2151, 1998.
    [80] B. M. Olivera, P. Baine, and N. Davidson. Electrophoresis of the nucleic acids.
    Biopolymers, 2:245, 1964.
    [81] K. D. Dorfman. Dna electrophoresis in microfabricated devices. Rev. Mod. Phys.,
    82:2903, 2010.
    [82] P. Mayer, G.-W. Slater, and G. Drouin. Theory of DNA sequencing using free-solution
    electrophoresis of protein-dna complexes. Anal. Chem., 66:1777, 1994.
    [83] G. Heller, G.-W. Slater, P. Mayer, N. Dovichi, J.-L. Pinto, D.; Viovy, and G. Drouin.
    Free-solution electrophoresis of DNA. J. Chromatogr. A, 806:113, 1998.
    [84] H. Ren, A. E. Karger, F. Oaks, S. Menchen, G. W. Slater, and G. Drouin. Separating
    DNA sequencing fragments without a sieving matrix. Electrophoresis, 20:2501, 1999.
    [85] R. J. Meagher, J.-I. Won, L. C. McCormick, S. Nedelcu, M. M. Bertr, J. L. Bertram,
    G. Drouin, A. E. Barron, and G.-W. Slater. End-labeled free-solution electrophoresis
    of DNA. Electrophoresis, 26:331, 2005.
    [86] R. R. Netz. Polyelectrolytes in electric fields. J. Phys. Chem. B, 107:8208, 2003.
    [87] P.-Y. Hsiao. Overcharging, charge inversion, and reentrant condensation: Using highly
    charged polyelectrolytes in tetravalent salt solutions as an example of study. J. Phys.
    Chem. B, 112:7347, 2008.
    [88] D. Porschke. Short electric-field pulses convert DNA from “condensed” to “free”
    conformation. Biopolymers, 24:1981, 1985.
    [89] E. Y. Chan. Advances in sequencing technology. Mutat. Res. -Fundam. Mol. Mech.
    Mutagen., 573:13, 2005.
    [90] P. K. Gupta. Single-molecule DNA sequencing technologies for future genomics research.
    Trends Biotechnol., 26:602, 2008.
    [91] R. Treffer. Recent advances in single-molecule sequencing. Curr. Opin. Biotechnol.,
    21:4, 2010.
    [92] The presented materials are either the results repoted in Wu, Kum-Mao’s master
    thesis or the results organized from his simulation data.
    [93] M. Elimelech and C. R. O’Melia. Effect of electrolyte type on the electrophoretic
    mobility of polystyrene latex colloids. Colloids Surf., 44:165, 1990.
    [94] M. de Frutos, E. Raspaud, A. Leforestier, and F. Livolant. Aggregation of nucleosomes
    by divalent cations. Biophys. J., 81:1127, 2001.
    [95] M. G. L. van den Heuvel, R. Bondesan, M. C. Lagomarsino, and C. Dekker. Singlemolecule
    observation of anomalous electrohydrodynamic orientation of microtubules.
    Phys. Rev. Lett., 101:118301, 2008.
    [96] M. Cosentino Lagomarsino, I. Pagonabarraga, and C. P. Lowe. Hydrodynamic induced
    deformation and orientation of a microscopic elastic filament. Phys. Rev. Lett.,
    94:148104, 2005.
    [97] X. Schlagberger and R. R. Netz. Orientation of elastic rods in homogeneous stokes
    flow. Europhys. Lett., 70:129, 2005.
    [98] X. Schlagberger and R. R. Netz. Anomalous birefringence and polarizability saturation
    of charged elastic rods: Field-strength, salt and finite-concentration effects.
    Europhys. Lett., 83:36003, 2008.
    [99] S. Frank and R. G. Winkler. Polyelectrolyte electrophoresis: Field effects and hydrodynamic
    interactions. Europhys. Lett., 83:38004, 2008.
    [100] J. Shendure, R. D. Mitra, C. Varma, and G. M. Church. Advanced sequencing technologies:
    Methods and goals. Nat. Rev. Genet., 5:335, 2004.
    [101] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating
    inhibitors. Proc. Natl. Acad. Sci. USA, 74:5463, 1977.
    [102] S. B. Smith, Y. Cui, and C. Bustamante. Overstretching B-DNA: The elastic response
    of individual double-stranded and single-stranded DNA molecules. Science, 271:795,
    1996.
    [103] T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu. Stretching of a single tethered
    polymer in a uniform flow. Science, 268:83, 1995.
    [104] M. Washizu, O. Kurosawa, I. Arai, S. Suzuki, and N. Shimamoto. Applications of
    electrostatic s tretch-and-positioning of DNA. IEEE Trans. Ind. Appl., 31:447, 1995.
    [105] N. Kaji, M. Ueda, and Y. Baba. Molecular stretching of long DNA in agarose gel
    using alternating current electric fields. Biophys. J., 82:335, 2002.
    [106] N. Kaji, M. Ueda, and Y. Baba. Stretching of megabase-sized deoxyribonucleic acid
    molecules by tuning electric-field frequency. Appl. Phys. Lett., 83:3413, 2003.
    [107] S. Ferree and H. W. Blanch. Electrokinetic stretching of tethered DNA. Biophys. J.,
    85:2539, 2003.
    [108] J. O. Tegenfeldt, O. Bakajin, C.-F. Chou, S. S. Chan, R. Austin, W. Fann, L. Liou,
    E. Chan, T. Duke, and E. C. Cox. Near-field scanner for moving molecules. Phys.
    Rev. Lett., 86:1378, 2001.
    [109] A. Bensimon, A. J. Simon, A. Chiffaudel, V. V. Crouquette, F. Heslot, and D. Bensimon.
    Alignment and sensitive detection of DNA by a moving interface. Science,
    265:2096, 1994.
    [110] S. B. Smith, L. Finzi, and C. Bustamante. Direct mechanical measurements of the
    elasticity of single DNA molecules by using magnetic beads. Science, 258:1122, 1992.
    [111] S. B. Smith, P. K. Aldridge, and J. B. Callis. Observation of individual DNA molecules
    undergoing gel electrophoresis. Science, 243:203, 1989.
    [112] M Washizu. Bio-nanotechnology of DNA based on electrostatic manipulation. In
    H Morgan, editor, Electrostatics 2003, number 178 in Inst. Phys. Conf. Ser., pages
    89–94. IOP Publishing Ltd, 2004.
    [113] V. R. Dukkipati and S. W. Pang. Precise DNA placement and stretching in electrode
    gaps using electric fields in a microfluidic system. Appl. Phys. Lett., 90:083901, 2007.
    [114] V. R. Dukkipati and S. W. Pang. Hysteretic conformational transition of single flexible
    polyelectrolyte under resonant AC electric polarization. Macromolecules, 43:7402,
    2010.
    [115] N. Chetwani, C. A. Cassou, D. B. Go, and H.-C. Chang. High-frequency AC electrospray
    ionization source for mass spectrometry of biomolecules. J. Am. Soc. Mass
    Spectrom., 21:1852, 2010.
    [116] H. Liu, Y. Zhu, and E. Maginn. Molecular simulation of polyelectrolye conformational
    dynamics under an AC electric field. Macromolecules, 43:4805, 2010.
    [117] H.-C. Chang and L. Y. Yeo. Electrokinetically Driven Microfluidics and Nanofluidics.
    Cambridge University Press, 2010, 2010.
    [118] S. Basuray and H.-C. Chang. Induced dipoles and dielectrophoresis of nanocolloids
    in electrolytes. Phys. Rev. E, 75:060501, 2007.
    [119] Y. C. Wu and P. A. Berezansky. Low electrolytic conductivity standards. J. Res.
    Natl. Inst. Stand. Technol, 100:521, 1995.
    [120] A. N. Campbell and B. G. Oliver. Diffusion coefficients of sodium and lithium chlorates
    in water, at 25 degrees. Can. J. Chem., 47:2681, 1969.
    [121] J. E. Gordon, Z. Gagnon, and H.-C. Chang. Dielectrophoretic discrimination of bovine
    red blood cell starvation age by buffer selection and membrane cross-linking. Biomicrofluidics,
    1:044102, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE