簡易檢索 / 詳目顯示

研究生: 鄭竣文
Cheng, Chun-Wen
論文名稱: 製作氧化銦鋅和氧化銦鎵鋅透明薄膜電晶體以高介電係數三氧化二釤為閘極絕緣層
Fabrication IZO and IGZO transparent thin film transistor using high dielectric constant Sm2O3 as gate insulator
指導教授: 吳孟奇
Wu, Meng-Chyi
劉國辰
Liu, Kou-Chen
口試委員: 楊智超
何充隆
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 69
中文關鍵詞: 高介電係數材料透明薄膜電晶體三氧化二釤氧化銦鋅氧化銦鎵鋅
外文關鍵詞: high-k material, transparent thin film transistor, samarium oxide, IZO, IGZO
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,許多寬能隙稀土金屬氧化物半導體材料已經被廣泛地運用在各種原件上,但其中三氧化二釤尚未被廣泛的研究。在本論文中,將致力研究三氧化二釤薄膜的電特性。並將三氧化二釤用於透明薄膜電晶體的閘極絕緣層,分別以氧化銦鋅和氧化銦鎵鋅作為元件主動層,量測分析透明薄膜電晶體的特性。
    本論文的第一部分展示三氧化二釤薄膜經由反應式濺鍍沉積於氧化銦錫玻璃,經過電漿及退火處理後的電容元件特性。再來成功地於室溫下分別以氧化銦鋅和氧化銦鎵鋅為主動層以及三氧化二釤為閘極絕緣層製作出透明薄膜電晶體。此增強型操作的薄膜電晶體具有不錯的電特性,氧化銦鋅薄膜電晶體的電流開關比為9.49×106,臨界電壓為1.196(V),飽和遷移率為126.9(cm2/V-s),次臨界擺幅為0.308(V/decade)。氧化銦鎵鋅薄膜電晶體的電流開關比為1.63×108,臨界電壓為1.962(V),飽和遷移率為46.8(cm2/V-s),次臨界擺幅為0.197(V/decade)。
    本論文的第二部分成功地經由共濺鍍技術將氧化鉿摻雜到三氧化二釤薄膜,有效改善電容元件的漏電流和電容大小的特性。接著於室溫下分別以氧化銦鋅和氧化銦鎵鋅為主動層以及高介電係數的三氧化二釤為絕緣層製作出透明薄膜電晶體。氧化銦鋅薄膜電晶體的電流開關比為1.89×106,臨界電壓為2.577(V),飽和遷移率為12.4(cm2/V-s),次臨界擺幅為0.322(V/decase)。氧化銦鎵鋅薄膜電晶體的電流開關比為1.65×107,臨界電壓為1.405(V),飽和遷移率為14.9(cm2/V-s),次臨界擺幅為0. 2(V/decase)。


    In recent years, a lot of wide bandgap semiconducting rare metal oxide (REO) materials have been widely used in numerous electrical elements. But, samarium oxide (Sm2O3), one of rare metal oxides still has not been investigated widely. In this thesis, we were focused on structural and electrical properties of samarium oxide. Next, we have introduced samarium oxide as gate dielectric insulator of transparent thin film transistors, and then prepared active layer with IZO or IGZO respectively, finally analyzed their characteristics by measurement.
    The first part of this thesis demonstrates the characteristics of MIM capacitors. The Sm2O3 dielectric layer of MIM capacitor was deposited on ITO glass by reactive sputtering and used plasma or annealing treatments. Further, we successfully fabricated transparent thin film transistors (TTFTs) using IZO or IGZO as active layer and Sm2O3 as gate dielectric insulator at room temperature. The enhancement mode operation IZO TFT exhibited outstanding characteristics of on/off ratio, threshold voltage, saturation mobility, sub-threshold swing were 9.49×106, 1.196(V), 126.9(cm2/V-s), 0.308 (V/decade). The IGZO TFT showed stabilized characteristics in the light of on/off ratio, threshold voltage, saturation mobility, sub-threshold swing were 1.63×108, 1.962(V), 46.8(cm2/V-s), 0.197(V/decade).
    The second part of this thesis successfully demonstrates HfO2 was incorporated with Sm2O3 thin film by co-sputtering for reducing leakage and increasing capacitance of MIM capacitor. Next, we fabricated TTFTs using IZO or IGZO as active layer respectively and SmHfO as gate dielectric insulator at room temperature. The IZO TFT exhibited characteristics of on/off ratio, threshold voltage, saturation mobility, sub-threshold swing were 1.89×106, 2.577(V), 12.4(cm2/V-s), 0.322(V/decade). The IGZO TFT showed stabilized characteristics in the light of on/off ratio, threshold voltage, saturation mobility, sub-threshold swing were 1.65×107, 1.405(V), 14.9(cm2/V-s), 0.2(V/decade).

    Index 誌謝 i 中文摘要 ii Abstract iii Contents v Table Captions vii Figure Captions viii Chapter 1 Introduction 1 1.1 General background 1 1.2 Amorphous oxide semiconductor thin film transistor 2 1.3 Choice of high-k metal oxides 5 1.4 The high-k metal-insulator-metal (MIM) capacitor 7 1.4.1 Mechanism of the leakage current 7 1.4.2 Model of the nonlinear capacitance-voltage curve 9 1.5 Motivation 10 1.5.1 Motivation 10 1.5.2 Applications of samarium 12 Chapter 2 Experiment 13 2.1 Thin film deposition techniques and plasma system 13 2.1.1 The magnetron sputtering system 13 2.1.2 Thermal Evaporation 15 2.1.3 O2 Plasma System 16 2.2 Metal-insulator-Metal capacitor fabrication 17 Part I : Al/ Sm2O3/ITO capacitor 17 Part II : Al/ SmHfO/ITO capacitor 19 2.3 Thin film transistor fabrication 20 2.4 Experimental Procedures 21 2.4.1 Sm2O3 MIM Capacitor 21 2.4.2 IZO-based TFT 24 2.5 Electrical and thin film analysis 25 2.5.1 I-V measurement 25 2.5.2 C-V measurement 26 2.5.3 Atomic force microscope (AFM) 26 Chapter 3 Result and Discussion 28 3.1 Characteristics of Sm2O3 films 28 3.2 Characteristics of SmHfO films 43 3.3 Characteristics of IZO-based TFT 51 3.4 Characteristics of IGZO-based TFT 55 Chapter 4 Conclusion and Future work 59 4.1 Conclusion 59 4.2 Future work 61 Reference 62

    [1] John F. Conley, “Instabilities in Amorphous Oxide Semiconductor Thin-Film Transistors,” IEEE Transactions on Device and Materials Reliability, vol. 10, no. 4, Dec. 2010.
    [2] M. J. Powell, C. van Berkel, I. D. French, and D. H. Nichols, “Bias dependence of instability mechanisms in amorphous silicon thin film transistors,” Appl. Phys. Lett., vol. 51, no. 16, Oct. 1987.
    [3] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge produced amorphous Si,” Appl. Phys. Lett., vol. 31, no. 4, Aug. 1977.
    [4] Yuta Sugawara, Yukiharu Uraoka, Hiroshi Yano, Tomoaki Hatayama, Takashi Fuyuki, and Akio Mimura, “Crystallization of Double-Layered Silicon Thin Films by Solid Green Laser Annealing for High-Performance Thin-Film Transistors,” IEEE Electron Device Letters, vol. 28, no. 5, May 2007.
    [5] R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO based transparent thin film transistors,” Appl. Phys. Lett., vol. 82, no. 5, Feb. 2003.
    [6] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, “Transparent ZnO thin-film transistor fabricated by RF magnetron sputtering,” Appl. Phys. Lett., vol. 82, no. 7, Feb. 2003.
    [7] H. S. Bae, M. H. Yoon, J. H. Kim, and Seongil Im, “Photodetecting properties of ZnO-based thin-film transistors,” Appl. Phys. Lett., vol. 83, no. 25, Dec. 2003.
    [8] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, and H. Tabata, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, Feb. 2003.
    [9] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 25, Nov. 2004.
    [10] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,” J. Non-Cryst. Solids, vol.200, pp. 165, 1996.
    [11] M. Orita, H. Ohta, M. Hirano, S. Narushima, and H. Hosono, “Amorphous transparent conductive oxide InGaO3(ZnO)m (m≤ 4): a Zn4s conductor,” Phil. Mag. B, vol.81, 2001.
    [12] S. Chang, Y. W. Song, S. Lee, S. Y. Lee,and B. K. Ju "Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3 /HfO2/Al2O3 structure," Appl. Phys. Lett., vol. 92, May 2008.
    [13] L. Y. Su, H. Y. Lin, H. K. Lin, S. L. Wang, L. H. Peng, and J. J. Huang, "Characterizations of Amorphous IGZO Thin-Film Transistors With Low Subthreshold Swing," IEEE Electron Device Lett., vol. 32, no. 9, Sep. 2011.
    [14] S. Y. Lee, S. Chang, and J. S. Lee, "Role of high-k gate insulators for oxide thin film transistors," Thin Solid Films, vol 518, 2010.
    [15] C. J. Chiu, S. P. Chang, and S. J. Chang, "High-Performance a-IGZO Thin-Film Transistor Using Ta2O5 Gate Dielectric," IEEE Electron Device Lett., vol. 31, no. 11, Nov. 2010.
    [16] H. Z. Zhang, L. Y. Liang, A. H. Chen, Z. M. Liu, Z. Yu, H. T. Cao, and Q. Wan, "High-performance transparent thin-film transistor based on Y2O3 / In2O3 with low interface traps," Appl. Phys. Lett., vol. 97, Sep. 2010.
    [17] A. H. Chen, L. Y. Liang, H. Z. Zhang, Z. M. Liu, X. J. Ye, Z. Yu, and H. T. Cao "Enhancement of a-IZO TTFT Performance by Using Y2O3/Al2O3 Bilayer Dielectrics," Electrochemical and Solid-State Lett. vol. 14, 2011.
    [18] International Technology Roadmap for Semiconductors, site: www.itrs.net/
    [19] C. Auth, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass, T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi, J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris, N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren, V. Souw, K. Tone, F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn, C. Wallace, J. Wiedemer, and C. Wiegand, “45nm High-k + Metal Gate Strain-Enhanced Transistors,” VLSI Symp. Tech., 2008.
    [20] G. He, M. Liu, L. Q. Zhu, M. Chang , Q. Fang, L. D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100),” Surface Science, vol. 576, 2005.
    [21] J.I. Sung, J.S. Park, H. Kim, Y.W. Heo, J.H. Lee, J.J. Kim, G. M. Kim, and B. D. Choi, “Transparent amorphous indium zinc oxide thin-film transistors fabricated at room temperature” Appl. Phys. Lett., vol. 90, 2007.
    [22] Y. L. Wang, F. Ren, W. Lim, D. P. Norton, S. J. Pearton, I. I. Kravchenko, and J. M. Zavada, “Room temperature deposited indium zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 90, 2007.
    [23] K. K. Banger, Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard and H. Sirringhaus, “Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process,” Nature Materials, Dec. 2010.
    [24] D. C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, “Amorphous IZO-based transparent thin film transistors,” Thin Solid Films, vol. 516, Oct. 2007.
    [25] B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine, “High-mobility amorphous In2O3 –10 wt %ZnO thin film transistors,” Appl. Phys. Lett., vol. 89, 2006.
    [26] C. G. Choi, S. J. Seo, and B. S. Bae, “Solution-Processed Indium-Zinc Oxide Transparent Thin-Film Transistors,” Electrochemical and Solid-State Lett., 2008.
    [27] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, “Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide,” Journal of Non-Crystalline Solids, vol. 352, 2006.
    [28] P. T. Liu, Y. T. Chou, and L. F. Teng, “Charge pumping method for photosensor application by using amorphous indium-zinc oxide thin film transistors,” Appl. Phys. Lett., vol. 94, 2009.
    [29] R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Gonçalves, and E. Fortunato, “Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors” J. Appl. Phys., vol. 101, Feb. 2007.
    [30] A. H. Chen, L. Y. Liang, H. Z. Zhang, Z. M. Liu, X. J. Ye, Z. Yu, and H. T. Cao, “Enhancement of a-IZO TTFT Performance by Using Y2O3/Al2O3 Bilayer Dielectrics,” Electrochemical and Solid-State Lett., vol. 14, 2011.
    [31] E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Gonçalves, and R. Martins, “Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs,” Rapid Research Lett., no. 1, 2007.
    [32] J. Paivasaari, M. Putkonen, and L. Niinistf, “A comparative study on lanthanide oxide thin films grown by atomic layer deposition,” Thin Solid Films, vol. 472, 2005.
    [33] J. Robertsona, and B. Falabretti, “Band offsets of high K gate oxides on III-V semiconductors,” J. Appl. Phys., vol. 100, July 2006.
    [34] S. Jeon, K. Im, H. Yang, H. Lee, H. Sim, S. Choi, T. Jang, and H. Hwang, “Excellent Electrical Characteristics of Lanthanide (Pr, Nd, Sm, Gd, and Dy) Oxide and Lanthanide-doped Oxide for MOS Gate Dielectric Applications,” IEDM 2001, 2001.
    [35] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics Current status and materials properties considerations,” J. Appl. Phys., vol. 85, no. 10, May 2001.
    [36] O. Engstrom, B. Raeissi, S. Hall, O. Buiu, M.C. Lemme, H.D.B. Gottlob, P.K. Hurley, and K. Cherkaoui, “Navigation aids in the search for future high-k dielectrics Physical and electrical trends,” Solid-State Electronics, vol. 51, 2007.
    [37] S. M. Sze, Physics of Semiconductor Devices, 1981.
    [38] S. Blonkowski, M. Regache, and A. Halimaoui, “Investigation and modeling of the electrical properties of metal–oxide–metal structures formed from chemical vapor deposited Ta2O5 films,” J. Appl. Phys., vol. 90, no. 3, Aug. 2001.
    [39] H. Hu, C. Zhu, Y. F. Lu, and M. F. Li, “A High Performance MIM Capacitor Using HfO2 Dielectrics,” IEEE Electron Device Lett., vol. 23, no. 9, Sep. 2002.
    [40] S. Becu, S. Cremer, and J. L. Autran, “Microscopic model for dielectric constant in metal-insulator-metal capacitors with high-permittivity metallic oxides,” Appl. Phys. Lett., vol. 88, 2006.
    [41] P. Gonon and C. Vallee, “Modeling of nonlinearities in the capacitance-voltage characteristics of high-k metal-insulator-metal capacitors,” Appl. Phys. Lett., vol. 90, April 2007.
    [42] P. Gonon and F. El Kamel, “Dielectric response of Cu/amorphous BaTiO3 /Cu capacitors,” J. Appl. Phys., vol. 101, April 2007.
    [43] F. El Kamel, P. Gonon and C. Vallée, “Experimental evidence for the role of electrodes and oxygen vacancies in voltage nonlinearities observed in high-k metal-insulator-metal capacitors,” Appl. Phys. Lett., vol. 91, Oct. 2007.
    [44] C. Wenger, G. Lupina, M. Lukosius, O. Seifarth, H.J. Mussig, S. Pasko, and Ch. Lohe, “Microscopic model for the nonlinear behavior of high-k metal-insulator-metal capacitors” J. Appl. Phys., vol. 103, May 2008.
    [45] D. Yang, Li J. Xue, and R. A. B. Devine, “Charge trapping in and electrical properties of pulsed laser deposited Sm2O3 films,” J. Appl. Phys., vol. 93, no. 11, June. 2003.
    [46] A.A. Dakhel, “Dielectric and optical properties of samarium oxide thin films,” Journal of Alloys and Compounds, vol. 365, 2004.
    [47] H. Yang, H. Wang, H. M. Luo, D. M. Feldmann, P. C. Dowden, R. F. DePaula, and Q. X. Jia, “Structural and dielectric properties of epitaxial Sm2O3 thin films,” Appl. Phys. Lett., vol. 92, Feb. 2008.
    [48] T. M. Pan, C. C. Huang, S. X. You, and C. C. Yeh, “Effect of Annealing on the Structural and Electrical Properties of High-k Sm2O3 Dielectrics,” Electrochemical and Solid-State Lett., vol. 11, no. 12, 2008.
    [49] Y. K. Chang, Y. R. Hwang, P. C. Juan, and Y. M. Lee, “Temperature Dependence of the Current Conduction Mechanisms in Sm2O3 Thin Films,” Journal of The Electrochemical Society, vol. 115, no. 12, 2008.
    [50] J. D. Chen, J. J. Yang, R. Wise, P. Steinmann, M. B. Yu, C. Zhu, and Y. C. Yeo, “Physical and Electrical Characterization of Metal–Insulator–Metal Capacitors With Sm2O3 and Sm2O3/SiO2 Laminated Dielectrics for Analog Circuit Applications,” IEEE Transactions on Electron Devices, vol. 56, no. 11, Nov. 2009.
    [51] T. M. Pan, and C. C. Huang, “Effects of oxygen content and postdeposition annealing on the physical and electrical properties of thin Sm2O3 gate dielectrics,” Applied Surface Science, vol. 256, 2010.
    [52] C. H. Kao, H. Chen, and S. P. Lin, “The Comparison of the High-k Sm2O3 and Sm2TiO5 Dielectrics Deposited on the Polycrystalline Silicon,” Electrochemical and Solid-State Lett., vol. 14, no. 2, 2011.
    [53] W. C. Chin, and K. Y. Cheong, "Effects of post-deposition annealing temperature and ambient on RF magnetron sputtered Sm2O3 gate on n-type silicon substrate," J Mater Sci: Mater Electron, April 2011.
    [54] Wikipedia, “http://en.wikipedia.org/wiki/Samarium”
    [55] Wikipedia, “http://en.wikipedia.org/wiki/Samarium(II)_iodide”
    [56] K. Li, Helen L. W. Chen, and C. L. Choy, “Samarium and Manganese-Doped Lead Titanate Ceramic Fiber/Epoxy 1-3 Composite for High-Frequency Transducer Application,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 50, no. 10, Oct. 2003.
    [57] Wikipedia, “http://en.wikipedia.org/wiki/Evaporation_(deposition)”
    [58] K. H. Lee, H. W. Jang, K. B. Kim, Y. H. Tak, and J. L. Lee, “Mechanism for the increase of indium-tin-oxide work function by O2 inductively coupled plasma treatment.” J. Appl. Phys., vol. 95, no. 15, Jan. 2004.
    [59] Wikipedia, “http://en.wikipedia.org/wiki/Atomic_force_microscopy”
    [60] J. Chen, W. J.g Yoo, and D. S. H. Chan, “Effects of N2, O2, and Ar plasma treatments on the removal of crystallized HfO2 film,” J. Vac. Sci. Technol. A, vol. 24, no. 1, Feb. 2006.
    [61] K. C. Liu, J. R. Tsai, W. K. Lin, C. S. Li, and J. N. Chen, “Defect passivation by O2 plasma treatment on high-k dielectric HfO2 films at room temperature,” Thin Solid Films, vol. 519, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE