研究生: |
黃盟欽 Meng-Chin Huang |
---|---|
論文名稱: |
直接甲烷固態氧化物燃料電池之特性研究 Study on Characteristics of Direct Methane Solid Oxide Fuel Cell |
指導教授: |
黃大仁
Ta-Jen Huang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 固態氧化物燃料電池 、甲烷 、電化學促進 、燃料處理 |
外文關鍵詞: | Solid oxide fuel cell, Methane, Electrochemical promotion, Fuel processing |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以甲烷為固態氧化物燃料電池(solid oxide fuel cell,簡稱SOFC)的燃料,進行SOFC陽極之積碳與去積碳之研究。SOFC係解決本世紀能源問題最有潛力的技術之一。近年來,使用甲烷為SOFC燃料的研究已有初步發展,然而陽極的積碳問題相當嚴重,且燃料使用率相當低。本研究以不同操作電壓、溫度及改變SOFC構成材料等變因,探討SOFC在操作時之陽極電化學反應;並於陽極側添加燃料處理觸媒層,對燃料及脫離陽極的生成物進行處理,以提高甲烷燃料的使用效率。
本研究以直接甲烷固態氧化物燃料電池(direct methane SOFC,簡稱DM-SOFC)進行發電研究,於陽極電化學反應過程中發現”晶格氧抽取之電化學促進(electrochemical promotion of lattice oxygen extraction )”的現象。此現象可抽取SOFC陽極側構成中的晶格氧來與陽極表面的碳反應,有助於減緩DM-SOFC陽極的積碳問題。此現象又引發另一現象,即SOFC可於無燃料時,經由陰極側氧離子填充至SOFC陽極側構成中之氧空缺而放出電流,此電流由本研究定名為”無燃料電流(fuel-free current)”。
在不同操作電壓的測試中,氧物種(Oδ-)在晶格中傳導所需之電荷δ隨操作電壓的增加而減少。因此,隨著操作電壓升高,電化學促進之效應越明顯。而於不同溫度發電時,氧物種在晶格中傳導所需之電荷則隨操作溫度的增加而減少。由溫度的變化可計算出SOFC在發電過程中晶格氧抽取的活化能為124 kJ/mol,遠將小於無發電狀態時之活化能(262 kJ/mol)。
於SOFC之陽極側添加金屬催化層的實驗結果顯示,該層的添加可令燃料進入SOFC前,先行進行燃料重組反應,減少DM-SOFC操作時陽極表面的積碳現象。出口組成的分析顯示,無水汽的生成且一氧化碳選擇率由0.702降至0.547,確認有催化層的存在時,可將SOFC反應後的產物進一步處理。本研究結果顯示,在DM-SOFC的操作中添加金屬催化層可以有效地提高甲烷燃料的使用效率,並可長時間地維持SOFC的操作活性。
In this study, we devoted to research the carbon deposition (coking) and de-coking on the anode of solid oxide fuel cell (SOFC), which fed with the methane flow. This work is considered as the most potential technology to solve the energy problems in this century. In recent years, there are some fuel cell researches using the methane as the fuel, but the fuel efficiency is quite low due to the carbon deposit on anode easily. Herein, we investigated the electrochemical reaction of the SOFC anode with different operating parameters, such as tuning the voltage, temperature or changing the SOFC material. Moreover, in order to improve fuel efficiency, the catalyst layer was added into anode side to deal with the fuel and product.
In the study of direct methane solid oxide fuel cell (DM-SOFC) , "Electrochemical promotion of lattice oxygen extraction" was observed in the process of electrochemical reaction. This phenomenon was oxygen extracted from lattices on anode side of SOFC reacted with the carbon on the surface of the anode. It can retard the carbon deposition. Furthermore, this phenomenon also brought a kind of current called "the fuel-free current". It’s be resulted the oxygen from the cathode-side three phase boundary (TPB) refilled the vacancies of the bulk lattice-oxygen on the anode side, especially in the absence of fuel.
As the experimental results, the charge δ of oxygen species (Oδ-) decreased with the operating voltage increased. Thereby, the electrochemical effect was more significant. It also found that the oxygen species for transmission in the lattice decreased with the operating temperature increased. Moreover, the activation energy of lattice oxygen extracted under close-circuit was 124 kJ/mol, smaller than the activation energy under open-circuit (262 kJ/mol).
When the catalyst layer was introduced to the anode side, the catalyst layer can promote the methane reforming reaction, reduced the coking on the surface of the anode in DM-SOFC. As the results, the carbon monoxide selectivity was about 0.702~0.547, and no water be detected. It showed that the further reaction of the products can be proceeded in presence of the catalyst layer.
In this study, the addition of the catalyst layer in the DM-SOFC operation effectively improved the fuel efficiency and maintained the SOFC activity in a long-term operation.
1. Proceeding of fuel cell,COE/TPC/ITRI, 1 ,1999.
2. Rostrup-Nielsen, J. R., in “Catalytic Steam Reforming, Science andEngineering” (J.R. Anderson and M. Boudart, Eds.),Vol. 5. Springer, Berlin, 1984.
3. J. Soltan Mohammad Zadeh and Kevin J. Smith, “Kinetics of CH4 Decomposition on Supported Cobalt Catalysts”, J. Catal., 176, 1998, 115
4. T. V. Choudhary, C. Sivadinarayana, C. C. Chusuei, A. Klinghoffer, and D. W. Goodman, “Hydrogen Production via Catalytic Decomposition of Methane”, J. Catal., 199, 2001, 9
5. Vasant R. Choudhary, Subhabrata Banerjee, Amarjeet M. Rajput, “Hydrogen from step-wise steam reforming of methane overNi/ZrO2: factors affecting catalytic methane decomposition andgasification by steam of carbon formed on the catalyst”, Appl. Catal. A: Gen. 234, 2002, 259
6. M.A. Ermakova, D.Y. Ermakov, G.G. Kuvshinov, L.M. Plyasova, “New Nickel Catalysts for the Formation of Filamentous Carbon in the Reaction of Methane Decomposition.”, J. Catal., 187, 1999, 77.
7. Yasuyuki Matsumura, Toshie Nakamori, “Steam reforming of methane over nickel catalysts at low reaction temperature”, Appl. Catal. A: Gen. 258, 2004, 107
8. Z. Hao, H.Y. Zhu, G.Q. Lu, “Zr-Laponite pillared clay-based nickel catalysts for methane reforming with carbon dioxide”, Appl. Catal. A: Gen., 242, 2003, 275.
9. T.J. Huang, T.C. Yu, Catal. Lett., “Effect of steam and carbon dioxide pretreatments on methane decomposition and carbon gasification over doped-ceria supported nickel catalyst”, 102, 2005, 175
10.T.J. Huang, H.C. Lin, T.C. Yu, “Preparative separation and purification of deoxyschisandrin andγ-schisandrin from Schisandra chinensis (Turcz.) Baill by high-speed counter-current chromatography”, Catal. Lett., 105, 2005, 239.
11.Chunshan Song, “Fuel processing for low-temperature and high-temperature fuel cells Challenges, and opportunities for sustainable development in the 21st century”, Catalysis Today. 77, 2002, 17.
12. Y. Lin, Z. Zhan, J. Liu, S.A. Barnett, “Direct operation of solid oxide fuel cells with methane fuel”, Solid State Ionics, 176, 2005, 1827.
13. C. Mallon, K. Kendall, “Sensitivity of nickel cermet anodes to reduction conditions.”, J. Power Sources, 145, 2005, 154.
14. Manabu Ihara, Keisuke Matsuda, Hikaru Sato, Chiaki Yokoyama, “Solid state fuel storage and utilization through reversible carbon deposition on an SOFC anode”, Solid State Ionics, 175, 2004, 51.
15. P. Tsiakaras, C. G. Yayenas, “Non-Faradaic Electrochemical Modification of Catalytic Activity VII The Case of Methane Oxidation on Platinum”, J. Catal., 140, 1993, 53.
16. D. Tsiplakides, C.G. Vayenas, “The absolute potential scale in solid state electrochemistry”, Solid State Ionics 152– 153 , 2002, 625.
17. Marwood, M.; Vayenas, C. G., “Promotion of Electronically Isolated Pt Catalysts on Stabilized Zirconia”, Journal of Catalysis Electrochemical, 168, 1997, 538.
18. H. Inaba, H. Tagawa, “Review Ceria-based solid electrolytes”, Solid State Ionics, 83, 1996, 1.
19. Gorte, J. M. Vohs, “Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons”, J. of Catalysis, 216, 2003, 477.
20. André Weber, Ellen Ivers-Tiffée, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, 127, 2004, 273.
21. Y. Liu, S. Hashimoto, H. Nishino, K. Takei, M. Mori, “Fabrication and characterization of a co-fired La0.6Sr0.4Co0.2Fe0.8O3−δ cathode-supported Ce0.9Gd0.1O1.95 thin-film for IT-SOFCs”, Journal of Power Sources 164, 2007, 56.
22. V.A.C. Haanappel, A. Mai, J. Mertens, “Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes”, Solid State Ionics 177, 2006, 2033.
23. J.P. Mart´ınez, D.M. L´opez, D.P. Coll, J.C. Ruiz-Morales, P. N´u˜nez, “Performance of XSCoF (X = Ba, La and Sm) and LSCrX_(X_ = Mn, Fe and Al) perovskite-structure materials on LSGM electrolyte for IT-SOFC”, Electrochimica Acta 52, 2007, 2950.
24. M.E.S. Hegarty, A.M. O’Connor, J.R.H. Ross,” Syngas production from natural gas using ZrO2-supported metals”, Catalysis Today, 42, 1998, 225.
25.S.P. Yoon, J. Han, S.W. Nam, T.H. Lim, I.H. Oh, S.A. Hong, “Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique”, J. of Power Sources, 106, 2002, 160.
26. J.Mizusaki, H.Tagawa and T.Saito, ”Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H2O Atmospheres”,J. Electrochem. Soc., 141, 1994, 2129.
27.M.J.Saeki,H.Uchida and M.Watanbe, “Noble metal catalysts highly-dispersed on Sm-doped ceria for the application to internal reforming solid oxide fuel cells operated at medium temperature”,Catal Lett., 26, 149, 1994.
28.M.Watanade, H.Uchida, M.Shibata, N.Mochizuki and K.Amikura, “High Performance Catalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells”,J. Electrochem. Soc., 141, 1994, 342.
29.Caine M. Finnerty, Neil J. Coe, Robert H. Cunningham, R. Mark Ormerod, ” Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane”, Catalysis Today, 46, 1998, 137.
30.Olga A. Marina, Mogens Mogensen, “High-temperature conversion of methane on a composite gadolinia-doped ceria–gold electrode”, Applied Catalysis A: General, 189, 1999, 117.
31.D. C. Seet, M. C. Wheeler, and C. B. Mullins, “Mechanism of the Dissociative Chemisorption of Methane over Ir(110) – Trapping -Mediated or Direct”, Chem. Phys. Lett., 266, 1997, 431.
32.M. C. J. Bradford and M. A. Vannice “CO2 reforming of CH4, ”Catal. Rev.-Sci. Eng., 41(1), 1999, 1.
33.S. Bebelis, C.G. Vayenas, “Non-Faradaic electrochemical modification of catalytic activity. I: The case of ethylene oxidation on Pt”, J. Catal., 108, 1989, 125.
34.C. Karavasilis, S. Bebelis, C.G. Vayenas, “Non-Faradaic Electrochemical Modification of Catalytic Activity: X. Ethylene Epoxidation on Ag Deposited on Stabilized ZrO2in the Presence of Chlorine Moderators.”, J. Catal., 160, 1996, 190.
35. D. Tsiplakides and C. G. Vayenas, “Temperature Programmed Desorption of Oxygen from Ag Films Interfaced with Y2O3-Doped ZrO2”, Journal of Catalysis 185, 1999, 237.
36. C. Pliangos, I. V. Yentekakis, S. Ladas, and C. G. Vayenas, “Non-Faradaic Electrochemical Modification of Catalytic Activity”, J. Catal. 159, 1996, 189.
37.S. Bebelis, M. Makri, A. Buekenhoudt, J. Luyten, S. Brosda, P. Petrolekas, C. Pliangos, C.G.Vayenas, Electrochemical activation of catalytic reactions using anionic, cationic and mixed conductors, Solid State Ionics 129, 2000, 33.
38. S. Brosda, C.G. Vayenas, J. Wei, “Rules of chemical promotion” , Applied Catalysis B: Environmental 68, 2006, 109.
39. J. Nicole, D. Tsiplakides, C. Pliangos, X. E. Verykios, Ch. Comninellis, and C. G. Vayenas, “Electrochemical Promotion and Metal–Support Interactions” Journal of Catalysis 204, 2001, 23.
40. C.G. Vayenas, “Thermodynamic analysis of the electrochemical promotion of catalysis”, Solid State Ionics 168, 2004, 321.
41.Tiziana Pipoli, “Sponge Iron Process for Manned Space Exploration ”, 2005.
42.Hacker Viktor, Faleschini Gottfried, Fuchs Heidrun, Fankhauser Robert, Simader Günter, Ghaemi Mehdi, Spreitz Birgitet, Friedrich Kurt, “Usage of biomass gas for fuel cells by the SIR process”, Journal of Power Sources, 71, 1998, 226.
43.Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J, “Metal-supported solid oxide fuel cell membranes for rapid thermal cycling.”, Solid State Ionics, 176, 2005, 443.
44. Chung-Liang Chang A Cuo-Ciang Hsu A Ta-Jen Huang, “Cathode performance and oxygen-ion transport mechanism of copper oxide for solid-oxide fuel cells”, J Solid State Electrochem, 7, 2003, 125.
45. Ta-Jen Huang, Chun-Hsiu Wang, “Factors in forming CO and CO2 over a cermet of Ni-gadolinia-doped ceria with relation to direct methane SOFCs” Journal of Power Sources 163, 2006, 309.
46. T. Tagawa, K. Kuroyanagi, S. Goto, S. Assabumrungrat, P. Praserthdam, Selective oxidation of methane in an SOFC-type reactor: effect of applied potential, Chem. Eng. J. 93, 2003, 3
47. C. Kokkofitis, G. Karagiannakis, S. Zisekas, M. Stoukides, Catalytic study and electrochemical promotion of propane oxidation on Pt/YSZ, J. Catal. 234, 2005, 476.
48. D. Tsiplakides, S. Balomenou, A. Katsaounis, D. Archonta, C. Koutsodontis, C.G. Vayenas, Electrochemical promotion of catalysis: mechanistic investigations and monolithic electropromoted reactors, Catal. Today 100, 2005, 133.
49. T.J. Huang, C.H. Wang, Methane decomposition and self de-coking over gadolinia-doped ceria supported Ni catalysts, Chem. Eng. J. 132, 2007, 97.
50. T.J. Huang, C.H.Wang, Roles of surface and bulk lattice oxygen in forming CO2 and CO during methane reaction over gadolinia-doped ceria, Catal. Lett.
51. Q.Y. Yang, K.J. Maynard, A.D. Johnson, S.T. Ceyer, The structure and chemistry of CH3 and CH radicals adsorbed on Ni(1 1 1), J. Chem. Phys. 102, 1995, 7734.
52. I.S. Metcalfe, Electrochemical promotion of catalysis: I: Thermodynamic considerations, J. Catal. 199, 2001, 247.
53. S.P. Jianga , Y. Ramprakash, “H2 oxidation on NiY–TZP cermet electrodes – polarisation behaviour”, Solid State Ionics, 116, 1999, 145.
54. S.P. Jianga , Y. Ramprakash, “H2 oxidation on Ni Y–TZP cermet electrodes – a comparison of electrode behaviour by GCI and EIS techniques”, Solid State Ionics, 122, 1999, 211.
55.A. Q. Pham, R. S. Glass, “Oxygen pumping characteristics of yttria-stabilized-zirconia”, electrochimica acta., 43, 1998, 2699.
56. C.G. Vayenas, S. Brosda, and C. Pliangos, “The double-layer approach to promotion, electrocatalysis, electrochemical promotion, and metal–support interactions”, Journal of Catalysis, 216, 2003, 487.