研究生: |
黃俊元 Chun-Yuan Huang |
---|---|
論文名稱: |
低密度砷化銦與砷化銦鎵量子點之研製與特性探討 Investigation and Characterization of Low Density InAs and InGaAs Quantum Dots |
指導教授: |
吳孟奇
Meng-Chyi Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 低密度量子點 、砷化鎵 、砷化鎵銦 |
外文關鍵詞: | quantum dot, InAs, InGaAs |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在於探討自構式砷化銦及砷化鎵銦量子點的表面及發光特性,其主要研究內容嘗試調變不同的磊晶參數及磊晶方式,來達到降低量子點密度的目的,實驗中我們主要使用原子力顯微鏡、穿透式電子顯微鏡、光激發螢光光譜、微光激發螢光光譜和光譜響應量測來分析量子點的表面及發光特性,原子力顯微鏡可分析未加覆蓋之量子點的形狀、大小、高度及密度,而對於埋入式量子點及其底下之潤濕層特性則使用穿透式電子顯微鏡分析兩者間的依存關係,另外就量子點的光激發螢光光譜,可研究量子點的零維度特性、填態效應、載子動態行為及溫度效應對載子分佈的影響,亦可用來研究熱處理後的量子點侷限能階。尤有甚者,微光激發螢光光譜除了縮小樣品被激發的面積,藉以提高激發能量密度以解析出量子點內所有能階,對於低密度量子點樣品,更能進一步研究單一量子點特性以及在極低溫下單光子發射特性。而光譜響應量測對一般紅外線偵測器而言,更是直接獲知偵測器操作頻段的有效工具。
論文的第一部份,我們介紹一般最常使用之『史傳斯基-克拉斯担諾夫』磊晶模式(以下簡稱SK磊晶模式)以及使用分子束磊晶法配合三維成長來長成量子點。在成長低密度量子點之前,先成長標準之SK磊晶模式之量子點樣品,藉由調變磊晶參數如成長速率及溫度,來觀察對形成之量子點結構及光電特性的影響。在改變磊晶溫度的實驗中,我們發現量子點形成後,不適當的降溫步驟會使得量子點出現大小明顯不同的兩個群體,體積較大的量子點和缺陷有關,並會造成樣品發光效率的降低,過高的磊晶溫度會使該效應更加嚴重。而改變磊晶速率的實驗中,光激發螢光強度對量測溫度的非線性變化可能是因為量子點中基態的填態效應減小所造成。
論文的第二部份,我們使用不同的方法期望能降低量子點密度,首先我們使用『後成長退火』的方式來形成砷化銦量子點,藉由後成長退火的步驟,使低於臨界厚度的潤濕層也能出現高品質量子點,實驗中我們改變退火時間及溫度,樣品分析的結果顯示,最佳退火時間及溫度分別為60秒和515℃。而成長低密度砷化鎵銦量子點的研究中,我們選擇最簡單的方式-降低磊晶速率,結果顯示當速率降低至0.054微米/小時左右,形成的自構式量子點會沿著晶向[110]逐漸排列成一維的量子點陣列,磊晶速率越低,一維陣列越明顯,之前文獻的研究結果,從未觀察到此一現象,我們研判這是因為低磊晶速率下,各向異性的銦和鎵原子遷移速率差異較明顯所致,然而伴隨著一維量子點陣列的出現,量子點發光效率逐漸降低,可能與缺陷的形成有關,另外從穿透式電子顯微鏡照片我們也發現出現一維量子點陣列的樣品其潤濕層厚度較薄,這樣的結果證明了我們對銦原子去吸附效應的假設。
最後,我們使用標準的SK磊晶模式自構式砷化銦量子點技術,製作出量子點紅外線偵測器,元件結構中包含三十層的量子點活化層,由微光激發螢光光譜的結果,潤濕層訊號微弱,我們以為原因在於相鄰量子點之距離小於載子之平均自由路徑,而使熱活化的載子從量子點脫出後極易再被相鄰之量子點所捕捉,造成電子不易從潤濕層之位能陷阱中躍遷並與電洞復合而放射螢光。從元件的光譜響應顯示,元件可操作於高溫220℃,主要的響應區域發生在波長為5.5微米附近,對此,高溫操作的機制在於從激發態回到基態的載子具有較長的載子鬆弛時間,因而允許載子有較大的機率可從量子點位能陷阱中脫出,而形成量測到的光電流。另外在低溫下的微光激發螢光光譜中,量子點與潤濕層的訊號能量差,恰與光譜響應所顯示之偵測區域一致,因此我們認為可以直接使用光激發螢光光譜的結果,來預測元件的偵測區域,如此可以避免在元件最佳化過程中,重複繁複的製程步驟以節省元件研發時間。
The main propose of this dissertation is fabricating and investigating the low density self-assembled InAs/GaAs and InGaAs/GaAs quantum dots (QDs) grown by molecular beam epitaxy. The surface morphology and optical characteristics of quantum dots are investigated. Several measurement techniques have been employed: atomic force microscopy (AFM), cross-section transmission electron microscopy (TEM), photoluminescence (PL), micro-photoluminescence (□-PL), and spectral response. In principle, the AFM is used to analyze the density, shape, size and height of uncapped QDs while the cross-section TEM is for the analysis of the interrelation of embedded ones and the beneath wetting layer (WL). From the statistic results of AFM images, the uniformity of QDs can also be derived. Secondly, the general features of the QD photoluminescence, including the state-filling effect and its interplay with carrier dynamics, and the temperature effects on carrier distributions are comprehensively discussed. Furthermore, the □-PL measurement is prepared for the analysis of few even sigle QD and the ultimate single photon emission at low temperature. The spectral response is an essential measurement technique for the analysis of detection region of the infrared photodetectors as well.
First of all, we investigated the InAs QDs grown by Stranski-Krastanow (SK) growth mode under different growth parameters, including the growth temperature and growth rate. In growth temperature tuning experiment, improper temperature quenching procedure can be responsible for the two groups of size distribution of QDs. The larger QDs, so called relaxed islands, are associated with the dislocations release and can greatly degrade the PL emission efficiency. Besides, the two stair-like PL intensities with increasing temperature in growth rate tuning experiment is resulted from the decrease of state-filling effect of the ground state and the thermally activated repopulation of electrons to nearby dots.
In second part, we try to use different growth modes to fabricate the low density InAs and InGaAs QDs. We choose the self-assembled InAs QD growth via postgrowth annealing. The 1.5 monolayer of InAs is deposited since the dot density would significantly increase with increasing InAs layer thickness. The results exhibit the optimal annealing time and annealing temperature are 60 sec and 515 ℃, respectively. For the InGaAs QD growth, we choose the simplest method-extremely reduce the growth rate. A particular phenomenon of one-dimensional QD ordering along [110] can be gradually apparent after the growth rate is reduced beyond 0.054 □m/hr. It is never observed for InGaAs QDs from previous reports. It should be originated from the enhancement of the difference of anisotropic In adatom migration lengths by low growth rate.
Finally, we fabricated the quantum dot infrared photodetectors (QDIPs) with 30 periods of InAs/GaAs QD layer and evaluated the relationship of PL and responsivity spectra. The weak PL signal from WL can be attributed to the short average distance between the QDs, as compared to the mean free path of carriers. Our QDIPs have a detection peak at 5.5 □m at the temperature ranging from 120 to 220 K. The mechanism of high-temperature operation should be from the substantial reduction of electron relaxation time when the inter-level spacing is larger than the phonon energy. Consequently, the longer electron relaxation time from the excited states to the ground state in quantum dots allows the photoexcited carriers to escape from the dot and contribute to the photocurrent before relaxing back to the ground state. On the other hand, the normalized spectral response is almost identical to the peak of shifted □-PL spectra at the same temperature, which leads us to conclude that the detection range of a QDIP can be predicted by the □-PL spectra and therefore the complicated process can be omitted.
1. For recent review of self-assembled quantum dots, see for example: D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999); M. Sugawara, Self-assembled InGaAs/GaAs Quantum Dots, Vol. 60 of Semiconductor and Semimetals, edited by R. K. Willardson and E. R. Weber (Academic Press, New York, 1999).
2. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gerard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett., vol. 87,no. 18, pp. 183601 1-4 , 2001.
3. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., vol. 40, pp. 939-941, 1982.
4. P. M. Petroff, A. C. Gossard, R. A. Logan, and W. Wiedmann, “Toward quantum well wires: Fabrication and optical properties,” Appl. Phys. Lett., vol. 41, pp. 635-638, 1982.
5. M. A. Reed, R. T. Bate, K. Bradshow, W. M. Duncan, W. R. Frenseley, J. W. Lee, and H. D. Shih, “Spatial quantization in GaAs–AlGaAs multiple quantum dots,” J. Vac. Sci. Technol. B, vol. 4, pp. 358-360, 1986.
6. Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu, K. G. Ravikumar, and S. Arai, “Light emission from quantum-box structure by current injection,” Jpn. J. Appl. Phys., vol. 26, pp. L225-L227, 1987.
7. D. Gershoni, H. Temkin, G. J. Dolan, J. Dunsmuir, S. N. G. Chu., and M. B. Panish, “Effects of two-dimensional confinement on the optical properties of InGaAs/InP quantum wire structures,” Appl. Phys. Lett., vol. 53, pp. 995-997, 1998.
8. P. M. Petroff, A. C. Gossard, and W. Wiegmann, “Structure of AlAs-GaAs interfaces grown on (100) vicinal surfaces by molecular beam epitaxy,” Appl. Phys. Lett., vol. 45, pp. 620-622, 1984.
9. T. Fukui and H. Saito, “(AlAs)0.5(GaAs)0.5 fractional-layer superlattices grown on (001) vicinal surfaces by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 50, pp. 824-826, 1987.
10. E. Kapon, K. Kash, E. M. Olausen, D. M. Hwang, and E. Colas, “Luminescence characteristics of quantum wires grown by organometallic chemical vapor deposition on nonplanar substrates,” Appl. Phys. Lett., vol. 60, pp. 477-479, 1992.
11. E. Kapon, S. Simhony, R Bhat, and D. M. Hwang, “Single quantum wire semiconductor lasers,” Appl. Phys. Lett., vol. 55, pp. 2715-2717, 1989.
12. A. R. Goni, L. N. Pfeiffer, K. W. West, A. Pinzuk, H. U. Baranger, and H. L. Stormer, “Observation of quantum wire formation at intersecting quantum wells,” Appl. Phys. Lett., vol. 61, pp. 1956-1958, 1992.
13. L. N. Pfeiffer, H. L. Stormer, K. W. Baldwin, K. W. West, A. R. Goni, A. Pinczuk, R. C. Ashoori, M. M. Dignam, and W. Wegscheider, “Cleaved edge overgrowth for quantum wire fabrication,” J. Cryst. Growth, vol. 127, pp. 849-852, 1993.
14. W. Wegscheider, L. N. Pfeiffer, A. Pinczuk, K. W. West, M. M. Dignam, R. Hull, and R. E. Leibenguth, “GaAs/AlGaAs quantum wire lasers fabricated by cleaved edge overgrowth,” J. Cryst. Growth, vol. 150, pp. 285-290, 1995.
15. I. N. Stranski and L. Krastanow, Akad. Wiss. Wien Math.-Natur. IIb, vol. 146, pp. 797-802, 1937.
16. M. Tabuchi, S. Noda, and A. Sasaki, “Mesoscopic structure in lattice-mismatched heteroepitaxial interface layers,” Sci. & Tech. Mesoscopic Structures, pp. 379-384, 1992.
17. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, “Growth by molecular beam epitaxy and characterization of InAs/GaAs strained-layer superlattices,” Appl. Phys. Lett., vol. 47, pp. 1099-1101, 1985.
18. D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Phys. Rev. Lett., vol. 64, pp. 1943-1946, 1990.
19. C. W. Synder, B. G. Orr, D. Kessler, and L. M. Sander, “Effect of strain on surface morphology in highly strained InGaAs films,” Phys. Rev. Lett., vol. 66, pp. 3032-3035, 1991.
20. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. DenBaars, and P. M. Petroff, “Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces,” Appl. Phys. Lett., vol. 63, pp. 3203-3205, 1993.
21. A. Madhukar, Q. Xie, P. Chen, and Konkar, “Nature of strained InAs three-dimensional island formation and distribution on GaAs(100),” Appl. Phys. Lett., vol. 64, pp. 2727-2729, 1994.
22. J. M. Moison, F. Houzay, F. Barthe, Leprince, E. Andre, and O. Vatel, “Self organized growth of regular nanometer-scale InAs dots on GaAs,” Appl. Phys. Lett., vol. 64, pp. 196-198, 1994.
23. D. Bimberg, QUEST Workshop on Quantum Structures, Colloquium Abstracts, Santa Barbara, p. 15.
24. G. Binnig, C. F. Quate, and C. Gerber, “Atomic force microscope,” Phys. Rev. Lett., vol. 56, pp. 930-933, 1986.
25. T. R. Albrecht, S. Akamine, T. E. Carver, and C. F. Quate, “Microfabrication of cantilever styli for the atomic force microscope,” J. Vac. Sci. Technol. A, vol. 8, pp. 3386-3396, 1990.
26. T. H. Gfroerer, “Photoluminescence in Analysis of Surfaces and Interfaces,” (John Wiley & Sons Ltd, Chichester), pp. 9209-9231, 2000.
27. A. J. Williamson, L. W. Wang, and A. Zunger, “ Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots,” Phys. Rev. B, vol. 62, no. 19, pp. 12963-12977, 2000.
28. G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris, “Vertically Aligned and Electronically Coupled Growth Induced InAs Islands in GaAs,” Phys. Rev. Lett., vol. 76, pp. 952-955, 1996.
29. O. B. Shchekin, G. Park, D. L. Huffaker, and D. G. Deppe, “Discrete energy level separation and the threshold temperature dependence of quantum dot lasers,” Appl. Phys. Lett., vol. 77, pp. 466-468, 2000.
30. H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, K. W. West, “Near-Field Spectroscopy of the Quantum Constituents of a Luminescent System,” Science, vol. 264, pp. 1740-1745, 1994.
31. N. H. Bonadeo, J. Erland, D. Gammon, D. Park, D. S. Katzer, D. G. Steel, “Coherent Optical Control of the Quantum State of a Single Quantum Dot,” Science, vol. 282, pp. 1473-1476, 1998.
32. G. S. Solomon, M. Pelton, and Y. Yamamoto, “Singl-mode Spontaneous Emission from a Single Quantum Dot in a Three-Dimensional Microcavity,” Phys. Rev. Lett., vol. 86, pp. 3903-3906, 2001.
33. K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific Publishing, Singapore), Chap. 6, 1997.
34. L. Chu, M. Arzberger, G. Böhm and G. Absteiter, “Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots,” J. Appl. Phys., vol. 85, pp. 2355-2362, 1999.
35. S. Z. Chang, T. C. Chang and S.C. Lee, “The growth of highly mismatched InxGa1–xAs (0.28≦x≦1) on GaAs by molecular-beam epitaxy,” J. Appl. Phys., vol. 73, pp. 4916-4926, 1993.
36. Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee and H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys., vol. 82, pp. 4489-4492, 1997.
37. M. Grundmann, N. Ledenstov, R. Heitz, L. Eckey, J. Christen, J. Bohrer, D. Bimberg, S. Ruvimov, P. Werner, U. Richter, J. Heydenreich, V. Ustinov, A. Egorov, A. Zhukov, P. Kopev and Z. Alferov, Phys. Status Solidi B, vol. 188, pp. 249-252, 1995.
38. K. Kamath, N. Chervela, K. K. Linder, T. Sosnowski, H. T. Jiang, T. Norris, J. Singh and P. Bhattacharya, “Photoluminescence and time-resolved photoluminescence characteristics of InxGa(1–x)As/GaAs self-organized single- and multiple-layer quantum dot laser structures,” Appl. Phys. Lett., vol. 71, pp. 927-929, 1997.
39. M. Y. Kong, X. Liang, D. Pan, Y. P. Zeng, J. Wang and W. Ge, “A comparison of photoluminescence properties of InGaAs/GaAs quantum dots with a single quantum well,” J. Appl. Phys., vol. 86, pp. 1456-1459, 1999.
40. M. Krishnamurthy, J. Drucker, and J. A. Venables, “Microstructural evolution during the heteroepitaxy of Ge on vicinal Si(100),” J. Appl.Phys., vol. 69, pp. 6461-6471, 1991.
41. S. F. Tang, S.Y. Lin, and S. C. Lee, “InAs quantum dots on (001) GaAs substrate with two groups of different sizes under arsenic shutter closed condition,” J. Nanoparticle Research, vol. 3, pp. 489-492, 2001.
42. S. Guha, A. Madhukar, and K. C. Rajkumar, “Onset of incoherency and defect introduction in the initial stages of molecular beam epitaxical growth of highly strained InxGa1–xAs on GaAs(100),” Appl. Phys. Lett., vol. 57, pp. 2110-2112, 1990.
43. J. Drucker, “Coherent islands and microstructural evolution,” Phys. Rev. B, vol. 48, no. 24, pp. 18203-18206, 1993.
44. R. Leon, J. Wellman, X. Z. Liao, J. Zou, and D. J. H. Cockayne, “Adatom condensation and quantum dot sizes in InGaAs/GaAs (001),” Appl. Phys. Lett., vol. 76, pp. 1558-1560, 2000.
45. T. J. Krzyzewski and T. S. Jones, “Ripening and annealing effects in InAs/GaAs(001) quantum dot formation,” J. Appl. Phys., vol. 96, pp. 668-674, 2004.
46. Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa, and N. Yokoyama, “Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3 □m,” J. Cryst. Growth, vol. 208, pp. 93-99, 2000.
47. O. G. Schmidt, S. Kiravittaya, Y. Nakamura, H. Heidemeyer, R. Songmuang, C. Muller, N. Y. Jin-Phillip, K. Eberl, H. Wawra, S. Christiansen, H. Grabeldinger, and H. Schweizer, “Self-assembled semiconductor nanostructures: climbing up the ladder of order,” Surface Sci., vol. 514, pp. 10-15, 2002.
48. S. Y. Lin, Y. J. Tsai and S. C. Lee, “Comparison of InAs/GaAs quantum dot infrared photodetector and GaAs/(AlGa)As superlattice infrared photodetector,” International Conference on Solid State Devices and Materials (SSDM), 2001, Tokyo, Japan.
49. W. H. Chang, T. M. Hsu, K. F. Tsai, T. E. Nee, J. I. Chyi and N. T. Yeh, “Excitation density and temperature dependent photoluminescence of InGaAs self-assembled quantum dots,” Jpn. J. Appl. Phys., vol. 38, pp. 554-557, 1999.
50. J. Y. Marzin, J. M. Gerard, A. Izrael, D. Barrier, and G. Bastard, “Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs,” Phys. Rev. Lett., vol. 73, pp. 716-719, 1994.
51. L. Landin, M. S. Miller, M. E. Pistol, C. E. Pryor, and L. Samuelson, “Optical studies of individual InAs quantum dots in GaAs: few-particle effects,” Science, vol. 280, pp. 262-264, 1998.
52. F. Findeis, A. Zrenner, G. Böhm, and G. Abstreiter, “Optical spectroscopy on a single InGaAs/GaAs quantum dot in the few-exciton limit,” Solid State Commum., vol. 114, pp. 227-230, 2000.
53. E. Dekel, D. Gershoni, E. Ehrenfreund, J. M. Garcia, and P. M. Petroff, “Carrier-carrier correlations in an optically excited single semiconductor quantum dot,” Phys. Rev. B, vol. 61, pp. 11009-11020, 2000.
54. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science, vol. 283, pp. 1670-1676, 1999.
55. Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically driven single-photon source,” Science, vol. 295, pp. 102-105, 2002.
56. M. H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots,” Appl. Phys. Lett., vol. 84, pp. 648-650, 2004.
57. E. Moreau, I. Robert, J. M. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett., vol. 79, pp. 2865-2867, 2001.
58. J. Hours, S. Varoutsis, M. Gallart, J. Bloch, I. Robert-Philip, A. Cavanna, I. Abram, F. Laruelle, and J. M. Gerard, “Single photon emission from individual GaAs quantum dots,” Appl. Phys. Lett., vol. 82, pp. 2206-2208, 2003.
59. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, “A single-photon turnstile device,” Nature, vol. 397, pp. 500-503, 1999.
60. C. Santori, D. Fattal, J. Vučkovič, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature, vol. 419, pp. 594-597, 2002.
61. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science, vol. 290, pp. 2282-2285, 2000.
62. J. Vučkovič, D. Fattal, C. Santori, G. S. Solomon, and Y. Yamamoto, “Enhanced single-photon emission from a quantum dot in a micropost microcavity,” Appl. Phys. Lett., vol. 82, pp. 3596-3598, 2003.
63. J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett., vol. 7, pp. G11-G13, 2004.
64. T. Ohira, T. Segawa, K. Nagai, K. Utaka, and M. Nakao, “Large area InP submicron two-dimensional (2D) periodic structures fabricated by two-time laser holography,” Jpn. J. Appl. Phys., vol. 41, pp. 1085-1089, 2002.
65. T. Ishikawa, T. Nishimura, S. Kohomoto, and K. Asakawa, “Site-controlled InAs single quantum-dot structures on GaAs surfaces patterned by in situ electron-beam lithography,” Appl. Phys. Lett., vol. 76, pp. 167-169, 2000.
66. H. Lee, J. A. Johnson, M. Y. He, J. S. Speck, and P. M. Petroff, “Strain-engineered self-assembled semiconductor quantum dot lattices,” Appl. Phys. Lett., vol. 78, pp. 105-107, 2001.
67. H. Lee, J. A. Johnson, J. S. Speck, and P. M. Petroff, “Controlled ordering and positioning of InAs self-assembled quantum dots,” J. Vac. Sci. Technol. B, vol. 18, pp. 2193-2196, 2000.
68. C. D. Lee, C. Park, H. J. Lee, K. S. Lee, S. J. Park, C. G. Park, S. K. Noh, and N. Koguchi, “Fabrication of self-assembled GaAs/AlGaAs quantum dots by low-temperature droplet epitaxy,” Jpn. J. Appl. Phys., vol. 37, pp. 7158-7160, 1998.
69. T. Mano, K. Watanabe, S. Tsukamoto, H. Fujioka, M. Oshima, and N. Koguchi, “New self-organized growth method for InGaAs quantum dots on GaAs(001) using droplet epitaxy,” Jpn. J. Appl. Phys., vol. 38, pp. L1009-L1011, 1999.
70. S. Sanguinetti, K. Watanabe, T. Tateno, M. Gurioli, P. Werner, M. Wakaki, and N. Koguchi, “Modified droplet epitaxy GaAs/AlGaAs quantum dots grown on a variable thickness wetting layer,” J. Cryst. Growth, vol. 253, pp. 71-76, 2003.
71. H. H. Zhan, R. Notzel, G. J. Hamhuis, T. J. Eijkemans, and J. H. Wolter, “Self-assembled InAs quantum dots formed by molecular beam epitaxy at low temperature and postgrowth annealing,” J. Appl. Phys., vol. 93, pp. 5953-5958, 2003.
72. S. Malik, C. Roberts, R. Murray, and M. Pate, “Tuning self-assembled InAs quantum dots by rapid thermal annealing,” Appl. Phys. Lett., vol. 71, pp. 1987-1989, 1997.
73. G. S. Solomon, J. A. Trezza, and J. S. Harris, “Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs,” Appl. Phys. Lett., vol. 66, pp. 991-993, 1995.
74. J. Tatebayashi, Y. Arakawa, N. Hatori, and H. Ebe, “InAs/GaAs self-assembled quantum-dot lasers grown by metalorganic chemical vapor deposition—Effects of postgrowth annealing on stacked InAs quantum dots,” Appl. Phys. Lett., vol. 85, pp. 1024-1026, 2004.
75. D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B, vol. 50, pp. 11687-11692, 1994.
76. J. Tatebayashi, M. Nishioka, T. Someya, and Y. Arakawa, “Area-controlled growth of InAs quantum dots and improvement of density and size distribution,” Appl. Phys. Lett., vol. 77, pp. 3382-3384, 2000.
77. A. Nakamura, A. N. Titkov, M. Ichida, V. P. Evtikhiev, and K. Kryganovskii, “Ambient AFM observations of the crater formation in InAs quantum dots on GaAs (001) vicinal surfaces after evaporation in UHV,” Appl. Phys. A: Mater. Sci. Process., vol. 66, pp. 1035-1038, 1998.
78. W. Seifert, N. Carlsson, J. Johansson, M. Pistol, and L. Samuelson, “In situ growth of nano-structures by metal-organic vapour phase epitaxy,” J. Cryst. Growth, vol. 170, pp. 39-46, 1997.
79. S. J. Xu, X. C. Wang, and S. J. Chua, “Effects of rapid thermal annealing on structure and luminescence of self-assembled InAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 72, pp. 3335-3337, 1998.
80. R. Leon, Y. Kim, and C. Jagadish, “Effects of interdiffusion on the luminescence of InGaAs/GaAs quantum dots,” Appl. Phys. Lett., vol. 69, pp. 1888-1890, 1996.
81. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, pp.149-159, 1967.
82. Z. Y. Xu, Z. D. Lu, X. P. Yang, Z. L. Yuan, B. Z. Zheng, J. Z. Xu, W. K. Ge, Y. Wang, and L. L. Chang, “Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates,” Phys. Rev. B, vol. 54, pp. 11528-11531, 1996.
83. Y. Tang, D. H. Rich, I. Mukhametzhanov, P. Chen, and A. Madhukar, “Self-assembled InAs/GaAs quantum dots studied with excitation dependent cathodoluminescence,” J. Appl. Phys., vol. 84, pp. 3342-3348, 1998.
84. S. Fafard, S. Raymond, G. Wang, R. Leon, D. Leonard, S. Charbonneau, J. L. Merz, P. M. Petroff, and J. E. Bowers, “Temperature effects on the radiative recombination in self-assembled quantum dots,” Surf. Sci., vol. 361, pp. 778-780, 1996.
85. Y. T. Dai, J. C. Fan, Y. F. Chen, R. M. Lin, S. C. Lee, and H. H. Lin, “Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses,” J. Appl. Phys., vol. 82, pp. 4489-4492, 1997.
86. K. Mukai, N. Ohtsuka, and M. Sugawara, “High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique,” Appl. Phys. Lett., vol. 70, pp. 2416-2418, 1997.
87. Y. Wu, K. Arai, and T. Yao, “Temperature dependence of the photoluminescence of ZnSe/ZnS quantum-dot structures,” Phys. Rev. B, vol. 53, pp. R10485-R10488, 1996.
88. D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, E. Petiprez, N. La Scala, and P. Basmaji, “Exciton localization and temperature stability in self-organized InAs quantum dots,” Appl. Phys. Lett., vol. 68, pp. 205-207, 1996.
89. L. Brusaferri, S. Sanguinetti, E. Grilli, M. Guzzi, A. Bignazzi, F. Bogani, L. Carraresi, M. Colocci, A. Bosacchi, P. Frigeri, and S. Franchi, “Thermally activated carrier transfer and luminescence line shape in self-organized InAs quantum dots,” Appl. Phys. Lett., vol. 69, pp. 3354-3356, 1996.
90. H. Lee, W. Yang, and P. C. Sercel, “Temperature and excitation dependence of photoluminescence line shape in InAs/GaAs quantum-dot structures,” Phys. Rev. B, vol. 55, pp. 9757-9762, 1997.
91. U. H. Lee, D. Lee, H. G. Lee, S. K. Noh, J. Y. Leem, and H. J. Lee, “Visible photoluminescence from self-assembled InAs quantum dots embedded in AlAs cladding layers,” Appl. Phys. Lett., vol. 74, pp. 1597-1599, 1999.
92. A. Polimeni, A. Patane, M. Henini, L. Eaves, and P. C. Main, “Temperature dependence of the optical properties of InAs/AlyGa1-yAs self-organized quantum dots,” Phys. Rev. B, vol. 59, pp. 5064-5068, 1999.
93. J. X. Chen, A. Markus, A. Fiore, U. Oesterle, R. P. Stanley, J. F. Carlin, R. Houdre, and M. Ilegems, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 □m applications,” J. Appl. Phys., vol. 91, pp. 6710-6716, 2002.
94. N. Carlsson, K. Georgsson, L. Montelius, L. Samuelson, W. Seifert, and R. Wallenberg, “Improved size homogeneity of InP-on-GaInP Stranski-Krastanow islands by growth on a thin GaP interface layer,” J. Cryst. Growth, vol. 156, pp. 23-29, 1995.
95. J. C. Woicik, K. E. Miyano, J. G. Pellegrino, P. S. Shaw, S. H. Southworth, and B. A. Karlin, “Strain and relaxation in InAs and InGaAs films grown on GaAs(001),” Appl. Phys. Lett., vol. 68, pp. 3010-3012, 1996.
96. S. Ruvimov, P. Werner, K. Scheerschmidt, U. Gösele, J. Heydenreich, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, P. S. Kop’ev, and Zh. I. Alferov, “Structural characterization of (In,Ga)As quantum dots in a GaAs matrix,” Phys. Rev. B, vol. 51, pp. 14766-14769, 1995.
97. T. Mano, R. Nötzel, D. Zhou, G. J. Hamhuis, T. J. Eijkemans, and J. H. Wolter, “Complex quantum dot arrays formed by combination of self-organized anisotropic strain engineering and step engineering on shallow patterned substrates,” J. Appl. Phys., vol. 97, pp. 014304 1-5, 2005.
98. W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B, vol. 69, pp. 233312-233315, 2004.
99. S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak, C. Gould, A. Sachrajda, S. Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J. L. Merz, “State-filling and magneto-photoluminescence of excited states in InGaAs/GaAs self-assembled quantum dots,” Superlatt. Microstruct., vol. 21, pp. 541-558, 1997.
100. B. D. Min, Y. Kim, E. K. Kim, S. K. Min, and M. J. Park, “Suppression of Ostwald ripening in In0.5Ga0.5As quantum dots on a vicinal (100) substrate,” Phys. Rev. B, vol. 57, pp. 11879-11882, 1998.
101. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce, and T. S. Jones, “Composition of InAs quantum dots on GaAs(001): Direct evidence for (In,Ga)As alloying,” Phys. Rev. B, vol. 58, pp. R15981-R15984, 1998.
102. R. Leon, C. Lobo, A. Clark, R. Bozek, A. Wysmolek, A. Kurpiewski, and M. Kaminska, “Different paths to tunability in III–V quantum dots,” J. Appl. Phys., vol. 84, pp. 248-254, 1998.
103. R. Leon, S. Fafard, D. Leonard, J. L. Merz, and P. M. Petroff, “Visible luminescence from semiconductor quantum dots in large ensembles,” Appl. Phys. Lett., vol. 67, pp. 521-523, 1995.
104. S. Y. Lin, Y. R. Tsai, and S. C. Lee, “Transport characteristics of InAs/GaAs quantum-dot infrared photodetectors,” Appl. Phys. Lett., vol. 83, pp. 752-754, 2003.
105. H. C. Liu, “Quantum dot infrared photodetector,” Opto-Electron. Rev., vol. 11, pp. 1-5, 2003.
106. S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, “Phonons and radiative recombination in self-assembled quantum dots,” Phys. Rev. B, vol. 52, pp. 5752-5755, 1995.
107. H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, “Quantum dot infrared photodetectors,” Appl. Phys. Lett., vol. 78, pp. 79-81, 2001.
108. S. W. Lee, K. Hirakawa, and Y. Shimada, “Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures,” Appl. Phys. Lett., vol. 75, pp. 1428-1430, 1999.
109. S. Hinooda, S. Loualiche, B. Lambert, N. Bertru, M. Paillard, X. Marie, and T. Amand, “Wetting layer carrier dynamics in InAs/InP quantum dots,” Appl. Phys. Lett., vol. 78, pp. 3052-3054, 2001.
110. M. Grundmann, N. N. Ledentsov, O. Siter, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Excited states in self-organized InAs/GaAs quantum dots: Theory and experiment,” Appl. Phys. Lett., vol. 68, pp. 979-981, 1996.
111. K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, “Emission from discrete levels in self-formed InGaAs/GaAs quantum dots by electric carrier injection: Influence of phonon bottleneck,” Appl. Phys. Lett., vol. 68, pp. 3013-3015, 1996.
112. S. F. Tang, S. Y. Lin, and S. C. Lee, “Near-room-temperature operation of an InAs/GaAs quantum-dot infrared photodetector,” Appl. Phys. Lett., vol. 78, pp. 2428-2430, 2001.
113. A. D. Stiff, S. Krishna, P. Bhattacharya, and S. W. Kennerly, “Normal-incidence, high-temperature, mid-infrared, InAs-GaAs vertical quantum-dot infrared photodetector,” IEEE J. Quantum Electron., vol. 37, pp. 1412-1419, 2001.