研究生: |
黃明祥 Ming Siang Huang |
---|---|
論文名稱: |
以鎳-鉍混合氧化物行甲烷蒸氣重組之研究 A study of steam reforming of methane over Nickel-Bismuth mixed oxides |
指導教授: |
黃大仁
Ta-Jen Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 二氧化碳選擇性 、Bismuth 、GDC |
外文關鍵詞: | CO2 selectivity, Bismuth, GDC |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同含量之鎳(Nickel)鉍(Bismuth)擔載於GDC (Gadolinia-doped Ceria)作為甲烷蒸氣重組反應(steam reforming of methane, SRM)之觸媒,觸媒以共含浸法及二次含浸法二種不同的方法製備而成,反應溫度則介於700℃至850℃之間。由觸媒之BET表面積測定實驗,發現觸媒的表面積隨著金屬的擔載量增加而下降,且Bi對表面積衰減的影響比Ni大;另外,於不同的製作方法上,共含浸法製備之觸媒表面積比二次含浸觸媒大。而在甲烷蒸氣重組實驗方面,發現觸媒的反應性及CO2選擇性隨著Bi含量的增加而呈現增加的趨勢,另外二次含浸觸媒相較於共含浸觸媒有較好的反應活性。而在溫度方面的影響,發現CO2選擇性隨著溫度提升而下降,然而,以Ni-Bi/GDC做為觸媒於反應溫度850℃下仍可維持在95%左右。
Systems of Gadolinia-doped ceria (GDC) supported nickel and bismuth were prepared as catalysts for a study of steam reforming of methane (SRM) reaction. Catalysts were made by co-impregnation and two-step impregnation methods, the reaction temperature is between 700 ℃ to 850 ℃. These systems were characterized by Brunauer Emmett teller(BET) surface area test and steam reforming reaction of methane. The surface area was found to decrease with a increase of metal loading, bismuth especially, and catalysts were made by co-impregnation method exhibited higher surface area than two-step impregnation method. Adding bismuth to GDC promotes both CO oxidation and methane activities, catalysts were made by two-step impregnation method especially. The CO2 selectivity increases proportion to bismuth contents but decreases proportion to reaction temperature. In this study, the CO2 selectivity maintains about 95% at the high temperature 850℃.
1. N.M. Sammes, G.A. Tompsett, H.N. fe and F. Aldinger, “Bismuth based oxide electrolytes structure and ionic conductivity”, Journal of the European Ceramic Society Vol.19, p.1801, (1999)
2. P. Shuk, H.D. Wiemhferb, U. Guth”, W. Gijpeld, M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3”, Solid State Ionics, Vol.89, p. 179, (1996)
3. K. Hellgardt, Z.G. Zhang, T. Yoshida, “Optimising H2 production from model biogas via combined stream trforming and CO shift reactions”, Fuel, Vol.84, p.869, (2005)
4. E.G. Muijpers, A.K. Breedijk, W. J. J. van der Wal, J. W. Genus, “Chemisorption of methane on Ni/SiO2 catalysts and reactivity of the chemisorption products toward hydrogen”, Journal of Catalysis, Vol.81, p.429, (1983)
5. T.V. Choudhary, D.W. Goodman, “Methane activation on Ni and Ru model catalysts”, Journal of Molecular Catalysis A-Chemical, Vol.163, p.9, (2000)
6. Y. Matsumura, T. Nakamori, “Steam reforming of methane over nickel catalysts at low reaction temperature”, Applied Catalysis A: General, Vol.258, p.107, (2004)
7. Y.G. Chen, J. Ren, “Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalysts. Effect of Ni-Al2O3 interactions”, Catalysis Letters, Vol.29, p.39, (1994)
8. K. Tomishige, O. Yamazaki, Y. Chen, K. Yokoyama, X. Li, K. Fujimoto, “Development of ultra-stable Ni catalysts for CO2 reforming of methane”, Catalysis Today, Vol.45, p.35, (1998)
9. Y.G. Chen, J. Ren, “Conversion of methane and carbon dioxide into synthesis gas over alumina-supported nickel catalysts. Effect of Ni-Al2O3 interactions”, Catalysis Letters, Vol.29, p.38, (1994)
10. J.H. Kim, D.J. Suh, T.J. Park, K.L. Kim, “Effect of metal particle size on coking during CO2 reforming of CH4 over Ni–alumina aerogel catalysts”, Applied Catalysis A: General, Vol.197, p.191, (2000)
11. K. Tomishige, K. Fujimoto, “Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio”, Applied Catalysis A: General, Vol.136, p.49, (2000)
12. E. Ruckenstein, Y.H. Hu, “Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts”, Applied Catalysis A: General, Vol.133, p.149, (1995)
13. M.C.J. Bradford, M.A. Vannice, “Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity”, Applied Catalysis A: General, Vol.142, p.73, (1995)
14. H.Y. Wang, E. Ruckenstein, “Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support”, Applied Catalysis A: General, Vol.204, p.143, (2000)
15. S. Sharma, S. Hilaire, J.M. Vohs, R.J. Gorte and H.W. Jen, “Evidence for oxidation of ceria by CO2”, Journal of Catalysis, Vol.190, p.199, (2000)
16. J.M. Wei, B.Q. Xu, J.L. Li, Z.X. Cheng, Q.M. Zhu, “Highly active and stable Ni/ZrO2 catalyst for syngas production by CO2 reforming of methane”, Applied Catalysis A: General, Vol.196, p.L167, (2000)
17. Y. Schuurman, C. Leclercq, X. Verykios and C. Mirodatos, “Specific features concerning the mechanism of methane reforming by carbon dioxide over Ni/La2O3 catalyst”, Journal of Catalysis, Vol.172, P.188, (1997)
18. M. Ito, T. Tagawa, S. Goto, “Suppression of carbonaceous depositions on nickel catalyst for the carbon dioxide reforming of methane”, Applied Catalysis A: General, Vol.177, p.15, (1999)
19. E. Ramírez-Cabrera, A. Atkinson and D. Chadwick, “Catalytic steam reforming of methane over Ce0.9Gd0.1O2−x”, Applied Catalysis B: Environmental, Vol.47, p.127, (2004)
20. 王俊修,“以氧化釓添加氧化鈰為擔體擔載鎳和鐵觸媒行甲烷反應後的自身去積碳行為研究”,國立清華大學化學工程學系所,碩士論文,民國九十五年。
21. 李家府,“以氧化釓添加氧化鈰混合氧化鉍為擔體擔載鎳觸媒行甲烷反應之研究”, 國立清華大學化學工程學系所,碩士論文,民國九十六年。
22. T.J. Huang, J.F. Li, “Effect of Bi2O3 content on characteristics of Bi2O3–GDC systems for direct methane oxidation”, Journal of Power Sources, Vol.181, p.62, (2008)
23. N. Laosiripojana, S. Assabumrungrat, “Methane steam reforming over Ni/Ce–ZrO2 catalyst: Influences of Ce–ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics”, Applied Catalysis A: Genera, Vol.290, p.200, (2005)
24. Y. X. Chen, M. Heinen, Z. Jusys, and R.J. Behm. “Bridge-Bonded Formate: Active Intermediate or Spectator Species in Formic Acid Oxidation on a Pt Film Electrode”, Langmuir, Vol.22, p.399, (2006)